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ECDC European Centre for Disease Prevention and Control
EED Environmental enteric dysfunction
EFSA European Food Safety Authority
ETEC Enterotoxigenic Escherichia coli
ExPEC Extraintestinal pathogenic E. coli
FAO Food and Agriculture Organization of the United Nations
FBD Foodborne disease
FERG WHO Foodborne Disease Burden Epidemiology Reference Group
FGD Functional gastrointestinal disorders
FUTI Foodborne urinary tract infection
GBS Guillain-Barré syndrome
GMI Global Microbial Identifier
HUS Hemolytic uremic syndrome
IBD Inflammatory bowel disease
IBS Inflammatory bowel syndrome
JECFA Joint FAO/WHO Expert Committee on Food Additives
LTHO Long-term health outcomes
OR Odds ratio
PAF Population attributable fraction
PCR Polymerase chain reaction
PI-IBS Post-infectious irritable bowel syndrome
QALY Quality-adjusted life year
ReA Reactive arthritis
RR Relative risk
STEC Shiga toxin-producing E. coli
UC Ulcerative colitis
UTI Urinary tract infection
WGS Whole genome sequencing
WHO World Health Organization

9.1  Introduction

Disease burden estimates provide the foundation for evidence-informed policy 
making and are critical to public health priority setting around food safety. Several 
efforts have recently been undertaken to better quantify the burden of foodborne 
disease, as presented in Chaps. 7 and 8, but there is still much work to be done. This 
chapter outlines areas of improvement that would lead to improved estimates such 
as enhancing foodborne disease surveillance infrastructure and improving our 
understanding of the burden of chronic sequelae associated with foodborne disease. 
We also give an overview of attribution studies that will increase the usefulness of 
disease burden estimates by identifying the most important (groups of) foods or 
reservoirs that contribute to the disease burden.
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9.2  Foodborne Disease Surveillance

Many studies use data from public health surveillance to estimate the overall burden 
of foodborne disease (Flint et al. 2005; Haagsma et al. 2013; Scallan et al. 2011a, 
b). Public health surveillance systems for foodborne disease are largely passive and 
often require a laboratory confirmed diagnosis; therefore, only a relatively small 
number of cases are actually reported to public health agencies (Fig. 9.1). To esti-
mate the overall burden of foodborne disease using data from public health surveil-
lance, investigators must have a good understanding of how many cases of illness 
are lost at each stage of the surveillance pyramid due to underdiagnosis (i.e., medi-
cal care seeking, specimen submission, laboratory testing practices, laboratory test 
sensitivity) or underreporting (i.e., diagnosed illness not reported to surveillance). 
By estimating the degree of underdiagnosis (e.g., only 20% people seek medical 
care) and underreporting (e.g., only 90% of diagnoses illnesses were reported to 
public health), investigators adjust for undercounts by creating multipliers (e.g., the 
inverse of the proportion (1/0.20) equates to a multiplier of 5 for medical care seek-
ing) to scale up the number of illnesses reported in public health surveillance to 
estimate the overall number of illnesses in the community. An example is provided 
in Fig. 9.2.

Surveys of the general population have been used to estimate the number of 
people with a diarrheal illness that seek medical care and submit stool sample for 
testing (Jones et al. 2007; Scallan et al. 2005). Limitations of these retrospective 
surveys include the fact that they are based on self-report and people with a diar-
rheal illness in the community may not be representative of those with an enteric 
infection reported to surveillance, given that those with more severe symptoms may 
be more likely to seek medical care and submit a stool sample for testing (O’Brien 
et al. 2010; Scallan et al. 2006). Some investigators have tried to account for sever-
ity by estimating medical care seeking and stool sample submission separately for 
those with mild and severe illness, using symptoms such as bloody diarrhea or dura-
tion of illness as a marker for severity (Haagsma et al. 2013; Scallan et al. 2011a, b; 
Kirk et  al. 2014). Most surveys estimating the rate of medical care seeking and 
specimen submission focus on diarrheal illness, so estimates of underdiagnosis are 
often lacking for foodborne diseases that do not have diarrhea as a primary symp-
tom (e.g., brucellosis, listeriosis) or that are not associated with diarrhea (e.g., toxo-
plasmosis and most diseases associated with foodborne chemical hazards (Gibb 
et al. 2015)).

Because laboratory confirmation is often required for a foodborne disease to be 
diagnosed and reported to public health agencies, investigators must determine how 
often laboratories routinely test for specific pathogens as well as the sensitivity and 
specificity of the laboratory test that was used. Laboratory test sensitivity can be 
challenging to estimate as it encapsulates more than just sensitivity of the test in a 
controlled setting. Rather it is meant to capture the “real-world” laboratory test 
sensitivity which includes reductions in sensitivity caused by issues with transporta-
tion and transport media, timeliness of specimen collection and testing, and other 
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factors. Studies have derived estimates of laboratory test sensitivity from a variety 
of sources including quality assurance surveys (Hall et al. 2008), outbreaks (Chalker 
and Blaser 1998), and expert opinion (Ingram et al. 2013).

The increased use of culture-independent diagnostic testing (CIDT) for food-
borne pathogens poses a number of challenges for accurately estimating the burden 
of foodborne disease (Cronquist et al. 2012). CIDTs for bacterial enteric pathogens 
include nucleic acid amplification tests (such as PCR) and antigen-based methods 
(such as enzyme immunoassays and lateral flow assays) and are being increasingly 
used by clinical laboratories. While there are many advantages to CIDTs, including 
more rapid diagnosis and testing for pathogens not previously tested for routinely 
(e.g., Enterotoxigenic E. coli), any changes in laboratory test or practices will 
require investigators estimating the burden of foodborne disease to reassess the 
multipliers used to adjust for laboratory testing and laboratory test sensitivity when 
estimating total illnesses. The sensitivity and specificity of CIDTs is different from 
culture which has been the standard for many decades, and there is a lot of variation 
in test performance across different tests. In addition, the demographic characteris-
tics of patients with detected infections have also shifted, suggesting that testing 
practices have changed with the introduction of new tests. To account for the 
increased use of CIDTs, more information is needed on laboratory testing practices, 
sensitivity and specificity, and changes in clinician testing practices.

Reported 
to Health 

Department
/CDC

Laboratory 
confirmed case

Lab tests for organism

Specimen obtained

Person seeks care

Person becomes ill

Exposures in the general population

Fig. 9.1 The burden of illness pyramid (Adapted from CDC (Centers for Disease Control and 
Prevention (CDC) 2015))
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An alternative approach to obtaining population-level incidence estimates of 
diarrheal disease and attribution to specific pathogens is through (1) prospective 
cohort studies with community and etiologic components and (2) cross-sectional 
surveys with or without supporting targeted studies (Flint et al. 2005). Prospective 
cohort studies invite patients in the general population and/or presenting at general 
practices to provide detailed information on their health status during a pre-defined 
follow-up period. Patients meeting a case definition of acute gastroenteritis are 
invited to submit stool specimens for pathogen detection and to complete question-
naires on health, risk factors, and other relevant factors. Healthy controls may be 
invited to strengthen etiologic and risk factor analysis. Such prospective cohort 
studies are relatively expensive and complex and have been organized by only a few 
countries. Yet, these studies have the advantage of providing community incidence 
rates that are pathogen-specific. Key examples are the IID-1 and IID-2 studies in the 
United Kingdom (Tam et  al. 2012; Wheeler et  al. 1999) and the Sensor/NIVEL 
studies in the Netherlands (De Wit et al. 2001a, b, c). Prospective cohort studies 
have also implemented in major, recent international studies on the incidence and 
etiology of enteric disease in low and middle income countries, although these stud-
ies typically included patients presenting to health care and therefore do not provide 
population-based incidence estimates. Key examples are the GEMS (Kotloff et al. 
2013) and MAL-ED studies (The MAL-ED Network Investigators 2014; Platts- 
Mills et al. 2015).

Cross-sectional surveys, which are also known as prevalence studies, examine 
the association between a risk factor(s) and a disease by collecting data on both 
exposures and outcomes at a specific point in time rather than by following a group 
of patients over time, as is done in a prospective cohort study. In food safety, 

30,000 cases are reported to public health

Calculate number of cases that were diagnosed 
by multiplying number of reported cases 

by under-reporting multiplier (1/0.9 = 1.11) 

An estimated 33,300 cases were diagnosed 
(30,000 x  1.11 = 33,300)

Calculate total number of cases 
by multiplying number of cases that were diagnosed 

by under-diagnosis multiplier (1/0.2 = 5) 

An estimated 166,500 cases occurred
(33,300 x 5 = 166,500)

Fig. 9.2 Example of the use of multipliers in estimating the number of illnesses
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 cross- sectional surveys are typically based on random-dialing telephone surveys, 
and provide information on (self-reported) incidence of gastrointestinal illness and, 
depending on questionnaire design, other variables of interest for burden estimation 
and risk factor analysis. While these types of studies are faster and cheaper to con-
duct than prospective cohort studies, they cannot prove causality, and, as such, etio-
logical information often must be obtained from other sources. Flint et al. (Flint 
et  al. 2005) provide examples of studies implemented in different high-income 
countries, including the population surveys used to estimate the number of people 
with a diarrheal illness that seek medical care and submit stool sample for testing 
that were discussed previously.

Many foodborne pathogens are not routinely captured as part of routine surveil-
lance and may only be reported to public health agencies as part of a recognized 
outbreak. Therefore, outbreak reports may provide the only source of data for some 
pathogens. Because only a fraction of diagnosed cases are associated with an out-
break, studies apply an “outbreak multiplier” (in addition to any adjustments for 
underdiagnosis) to estimate the number outbreak of cases that would have been 
reported had all outbreak cases been reported to routine disease surveillance. Studies 
have derived an outbreak multiplier by comparing the number of cases reported to 
national surveillance with the number of cases reported as part of outbreak for the 
given pathogen or pathogens with both types of data available (e.g., Salmonella) 
(Scallan et al. 2011a, b; Kirk et al. 2014); however, it is not clear how representative 
these extrapolations are.

Outbreak reports also provide information on the routes of transmission and the 
foods responsible for illness, and these data have been used to attribute the burden 
of illness to specific sources (Adak et al. 2005; Painter et al. 2013). While data from 
outbreak reports can provide extremely valuable information on foods, there are 
several limitations. First, it is not known how representative outbreak-associated 
cases are of all cases of illness with regard to the implicated product. For example, 
chicken is thought to be the most important cause of Campylobacter infections, but 
most detected Campylobacter outbreaks have been linked to unpasteurized milk 
(Adak et al. 2005; Painter et al. 2013). Second, many outbreaks do not implicate a 
food vehicle as part of the outbreak investigations, so information may be missing 
or food vehicles may be reported as a “complex food” (e.g., lasagna) without a clear 
ingredient being identified as the culprit. Finally, outbreak data may be lacking for 
some pathogens of interest; for example, Campylobacter is rarely associated with 
outbreaks but causes a significant number of illnesses annually.

Public health surveillance and outbreak reports are important sources of data for 
estimating the overall burden of disease and attributing the burden of illness to spe-
cific sources. More complete surveillance data accompanied by supplemental stud-
ies that illuminate different points in the surveillance pyramid increase the accuracy 
of burden of disease estimates based on public health surveillance data. In particu-
lar, more work is needed to understand the surveillance pyramid for non-diarrheal 
foodborne pathogens. Understanding laboratory testing practices, laboratory test 
sensitivity and specificity, and changes in physician testing practices in the age of 
CIDTs is also of critical importance. Outbreak reports provide critical information 
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on pathogens not routinely reported to public health surveillance and provide data 
needed to attribute illness to specific foods. This underscores the importance of 
investigating outbreaks, identifying the causative pathogen and implicating a food 
vehicle, and systematically collecting these data in a central location.

9.3  Disease Burden of Chronic Sequelae

Traditionally, burden of disease estimates have focused on the incidence of acute 
foodborne illness, hospitalization, and death (Scallan et  al. 2011a, 2011b; Mead 
et al. 1999). However, foodborne illness has been associated with several chronic 
diseases, including functional gastrointestinal disorders, renal dysfunction, reactive 
arthritis, neurologic disorders, cognitive and developmental deficits (Table  9.1) 
(Batz et al. 2013; Keithlin et al. 2014a, b, 2015; Kowalcyk et al. 2013; Roberts et al. 
2009), and increased long-term mortality (Helms et  al. 2003). These long-term 
health outcomes (LTHO), which are described below, are major drivers of disease 
burden and cost (Havelaar et al. 2012; Mangen et al. 2014), but few long-term fol-
low- up studies of FBD have been conducted, and most that have been conducted 
have significant limitations that restrict their generalizability (Roberts et al. 2009). 
As a result, there are significant gaps in our understanding of the strength and con-
sistency of effect, temporality, dose response, burden of disease, and clinical man-
agement of the LTHOs associated with foodborne illness (Deising et al. 2013). Due 
to the lack of data and conclusive evidence on causality, many chronic sequelae 
associated with FBD have not been systematically included in burden of disease 
estimates. For example, Scharff (Scharff 2012) included the burden associated with 
irritable bowel syndrome (IBS) but did not include the burden associated with reac-
tive arthritis (ReA), while other researchers included ReA but excluded IBS from 
their burden estimates (Batz et al. 2012). When such discrepancies exist, it is diffi-
cult to compare burden estimates and/or make recommendations to decision- 
makers. Research is needed to address these important epidemiologic research gaps, 
which would lead to improved burden of disease estimates.

9.3.1  Functional Gastrointestinal Disorders and Inflammatory 
Bowel Disease

Exposure to foodborne pathogens has been associated with several functional gas-
trointestinal disorders (FGDs) that cause chronic or recurrent gastrointestinal 
symptoms. While the biological mechanism for this is not fully understood, it is 
hypothesized that exposure to the foodborne pathogen alters the gut flora, alters 
intestinal permeability and/or motility, and increases the number of intraepithelial 
lymphocytes, lamina propria T cells, and mast cells, triggering an immune 
response (Barbara et  al. 2009; Marshall et  al. 2004; Dunlop et  al. 2003; 
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DuPont 2008; Smith and Bayles 2007). Post-infectious irritable bowel syndrome 
(PI-IBS) has been associated with exposure to Campylobacter, Salmonella, Shiga 
toxin- producing E. coli (STEC), Shigella, Yersinia, Giardia, Trichinella, and noro-
virus, with the incidence varying by pathogen from 3%–36% (Dai and Jiang 2012; 
Halvorson et al. 2006; Ilnyckyj et al. 2003; Marshall et al. 2006; Pitzurra et al. 
2011; Porter et al. 2011, 2013a; Thabane et al. 2007). For example, patients from 
the 2000 Walkerton, Ontario, waterborne outbreak of E. coli O157:H7 and 
Campylobacter had an increased risk of PI-IBS (odds ratio (OR): 3.12; 95% con-
fidence interval (CI): 1.99–5.04) 8 years following the outbreak when compared to 
controls (Marshall et al. 2010). Increased risk of Crohn’s disease (CD) and ulcer-
ative colitis (UC) has also been associated with acute gastroenteritis generally 
(Garcia Rodriguez et al. 2006; Gradel et al. 2009; Jess et al. 2011; Porter et al. 
2008; Ternhag et  al. 2008) as well as with specific enteric pathogens, such as 
Campylobacter and Salmonella (Gradel et al. 2009; Jess et al. 2011; Ternhag et al. 
2008). A meta-analysis of nine studies found a twofold increase in risk of develop-
ing functional dyspepsia (FD) following infectious gastroenteritis (Pike et  al. 
2013). Celiac disease (CeD), an autoimmune disorder triggered by the protein epi-
topes of gluten, has been associated with Campylobacter, but the epidemiologic 
evidence is limited (Riddle et al. 2012, 2013). Identified risk factors for developing 
FGDs following acute gastroenteritis vary by FGD but generally include family 
history, age, gender, severity of acute infections, prior antibiotic use, smoking, 

Table 9.1 Selected health outcomes associated with foodborne pathogens (Batz et al. 2013)

Health outcome Foodborne pathogen

Celiac disease Campylobacter

Chronic diarrhea Campylobacter, Cryptosporidium, Giardia lamblia, Salmonella, 
Yersinia enterocolitica

Diabetes E. coli O157:H7, Shigella

Dyspepsia Campylobacter, E. coli O157:H7, Salmonella, Norovirus

Inflammatory bowel disease 
(IBD)

Campylobacter, Giardia lamblia, Salmonella, Shigella

Irritable bowel syndrome 
(IBS)

Campylobacter, E. coli O157:H7, Giardia lamblia, Norovirus, 
Salmonella, Shigella

Gastroesophageal reflux 
disease

Norovirus

Guillain-Barré syndrome 
(GBS)

Campylobacter

Hemolytic uremic syndrome 
(HUS)

E. coli O157:H7, Salmonella, Shigella

Multiple sclerosis Clostridium perfringens

Neurological disorders Cryptosporidium, E. coli O157:H7, Giardia lamblia, Listeria 
monocytogenes, Shigella, Vibrio vulnificus

Reactive arthritis (ReA) Campylobacter, Cryptosporidium, E. coli O157:H7, Giardia 
lamblia, Salmonella, Shigella, Yersinia enterocolitica

Renal impairment E. coli O157:H7, Shigella

Schizophrenia, depression Toxoplasma gondii

B. B. Kowalcyk et al.
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education level, psychosocial factors (e.g., stress, neuroses, hypochondrias), and 
health-care seeking behaviors (Dunlop et al. 2003; Riddle et al. 2012; Gwee et al. 
1999; Locke 3rd et al. 2000; Marshall et al. 2007; Neal et al. 1997; Nicholl et al. 
2008; Ruigómez et al. 2007).

9.3.2  Autoimmune Disorders

Exposure to foodborne pathogens can also cause autoimmune responses, such as 
reactive arthritis (ReA) and Guillain-Barré syndrome (GBS). Several studies have 
found an association between infectious gastroenteritis and ReA, a painful form of 
inflammatory arthritis that is triggered by an infection in another part of the body 
(Keithlin et al. 2014a, b; Ajene et al. 2013; Hannu 2011; Pope et al. 2007; Porter 
et al. 2013b). For example, a review of 14 cohort studies estimated the weighted 
mean incidence of ReA following Campylobacter, Salmonella, and Shigella infec-
tion to be 9, 12, and 12 per 100,000, respectively (Ajene et al. 2013). Estimates, 
however, vary across studies and reviews; this is likely due to the variability in 
measuring exposure and outcomes and/or differences in host/pathogen factors. 
Similarly, several studies and reviews have found an association between GBS, a 
rare but serious autoimmune disorder that causes paralysis and is fatal in 4–15% of 
patients, and infectious pathogens such as Cytomegalovirus, Epstein-Barr virus, 
Zika virus, Salmonella, and Campylobacter (Keithlin et al. 2015; Esan et al. 2017; 
Frenzen 2008; McCarthy and Giesecke 2001; McGrogan et al. 2009; Moore et al. 
2005; Mori et al. 2000; Tam et al. 2006, 2007; Winer 2001). Campylobacter jejuni 
infection, in particular, has been identified in 20–40% of GBS cases, making it the 
predominant antecedent infection for GBS (Hughes and Cornblath 2005; Nyati and 
Nyati 2013; Poropatich et al. 2010). GBS patients often develop long-term chronic 
sequelae with 31% showing moderate to severe neurological sequelae and 38% and 
44% reporting changes in their work situation and leisure activities, respectively, 
2.6–6.4 years post-GBS (Bernsen et al. 2002).

9.3.3  Hemolytic Uremic Syndrome

Hemolytic uremic syndrome (HUS) is a severe and potentially fatal complication 
characterized by acute hemolytic anemia (destruction of red blood cells), nephropa-
thy (kidney failure), and thrombocytopenia (reduced platelets) that can occur dur-
ing or immediately following the acute phase of foodborne illness and is most 
commonly associated with Shiga toxin-producing E. coli (STEC), although cases 
following Shigella and Salmonella infection have been reported (Keithlin et  al. 
2014a; Garg et al. 2003; Karpman et al. 1998; Mayer et al. 2012; Siegler and Oakes 
2005). The proportion of cases that develop HUS varies by pathogen species, sero-
type, and virulence factors. A meta-analysis of 82 studies found that 4.2–17.2% of 
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E. coli O157:H7 cases develop HUS (Keithlin et al. 2014a) which is consistent with 
data collected through national surveillance systems in the United States and the 
United Kingdom (Byrne et al. 2015; Gould et al. 2013, 2009), with an estimated 
3–5% of cases being fatal (Andreoli et al. 2002; Mody et al. 2015; Siegler 1995). 
Children below 5 years of age and the elderly are at higher risk of developing HUS 
following STEC infection (Wong et  al. 2012); bloody diarrhea, fever, treatment 
with β-lactam antibiotics, and serotypes with class 2 Shiga toxin and eae (intimin 
encoding) virulence genes are additional risk factors (Brandal et al. 2015; Ethelberg 
et  al. 2004; Gianantonio et  al. 1968; Launders et  al. 2016; Siegler et  al. 1994; 
Werber et al. 2003). Chronic sequelae, including renal impairment, hypertension, 
diabetes mellitus, cardiovascular disease, and neurological sequelae such as sei-
zures, hemiparesia, epilepsy, and developmental delay, have been associated with 
HUS (Garg et al. 2003; Bale Jr. et al. 1980; Bauer et al. 2014; Magnus et al. 2012; 
Nathanson et al. 2010; Buder et al. 2015; Clark et al. 2010; Eriksson et al. 2001; 
Gagnadoux et al. 1996; Kelles et al. 1994; Suri et al. 2005). The Walkerton Health 
Study found that, 8 years after the Walkerton outbreak, patients with moderate to 
severe acute symptoms were significantly more likely to develop hypertension, 
renal impairment, and self-reported cardiovascular disease than asymptomatic or 
mildly ill cases (Clark et al. 2010). A large meta-analysis found similar results with 
25% of HUS cases suffering renal sequelae (95% CI: 20–30%), 10% hypertension 
(95% CI: 8–12%), and 15% proteinuria (95% CI: 10–20%) (Garg et  al. 2003). 
Another meta-analysis found that 3.2% (95% CI: 1.3–5.1%) of children with HUS 
develop diabetes during the acute illness and 38% (95% CI: 24–55) develop persis-
tent diabetes (Suri et al. 2005). It is important to note that most studies of the long- 
term health impacts of HUS are retrospective, have small sample sizes and/or short 
follow-up, and often do not include neurological sequelae. Consequently, renal 
impairment is commonly the only chronic sequela included in burden estimates.

9.3.4  Neurological Dysfunction

Foodborne disease has been associated with neurological sequelae such as impaired/
delayed cognitive development, motor impairment, seizures, palsies, and vision/
hearing loss (Roberts et al. 2009). While several pathogens—such as Salmonella, 
Campylobacter, Shigella, Brucella, and several parasites, including Taenia solium, 
Trichinella, Echinococcus, Diphyllobothrium, Paragonimus, Spirometra, and 
Toxocara – have been associated with neurological sequelae, the most notable are 
Listeria monocytogenes and Toxoplasma gondii (Batz et  al. 2013; Schlech 3rd 
2000). L. monocytogenes can cause sepsis, meningoencephalitis, or acute respira-
tory distress syndrome, particularly in fetuses, newborns, the elderly, and those with 
compromised immune systems—resulting in residual neurological deficits and 
sometimes death (Lomonaco et al. 2015; Mylonakis et al. 1998, 2002; Swaminathan 
and Gerner-Smidt 2007). In a meta-analysis of 87 studies, 43.8% of perinatal and 
13.7% of non-perinatal listeriosis cases with central nervous system infections 
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subsequently developed neurological sequelae, including long-term hearing/vision 
loss and stroke outcomes (Maertens de Noordhout et al. 2014). While most infected 
individuals experience no symptoms, T. gondii can cause serious illness and signifi-
cant neurological sequelae, particularly in fetuses, newborns, and individuals with 
compromised immune systems. Congenital toxoplasmosis is usually more severe 
than acquired toxoplasmosis and has been associated with vision/hearing impair-
ment, cognitive impairment, psychomotor deficiencies, and seizures (Havelaar et al. 
2007a, 2007b).

9.3.5  Psychological Disorders

There is emerging evidence that infection with foodborne pathogens may increase 
risk of psychological disorders, such as depression, chronic fatigue, anxiety, bipolar 
disorder, schizophrenia, and post-traumatic stress disorder (Bolton and Robertson 
2016). For example, a follow-up study of 389 patients sickened in the 2011 E. coli 
O104 outbreak in Germany found that 6 months after the infection, 43% of patient 
had clinically relevant fatigue and 3% of patients suffered from post-traumatic 
stress syndrome (Löwe et  al. 2014). Of all the foodborne pathogens, the links 
between psychological disorders and T. gondii have been the most comprehensively 
studied. A meta-analysis of 50 case-control studies found significant differences in 
seroprevalence of T. gondii between healthy controls and patients with schizophre-
nia (OR: 1.81; CI: 1.51–2.16; p-value (p) < 0.001), bipolar disorder (OR: 1.52; CI, 
1.06–2.18; p  =  0.02), addiction (OR: 1.91; 95% CI, 1.49–2.44; p  <  0.001), and 
obsessive-compulsive disorder (OR: 3.4; 95% CI: 1.73–6.68; p < 0.001) (Sutterland 
et al. 2015). It has also been suggested that exposure to infectious agents could be 
associated through gut-brain interactions with autism spectrum disorder although, 
as with many of the chronic sequelae discussed here, more research is needed to 
establish a conclusive link (Bolton and Robertson 2016). The mechanisms by which 
bacterial and parasitic pathogens affect mental health are not well understood, but 
the hypothesis is that the pathogens directly infect the brain, as with T. gondii, or 
indirectly impact the brain by activating the peripheral nervous system (Sutterland 
et al. 2015; Torrey and Yolken 2003). More research is needed in this emerging area 
that may greatly contribute to the burden of foodborne disease.

9.3.6  Urinary Tract Infections

The association between urinary tract infections (UTIs) and extraintestinal patho-
genic E. coli (ExPEC) is well established, but there is emerging evidence that 
UTIs may also be associated with foodborne pathogens (Sutterland et  al. 2015; 
Nordstrom et al. 2013; Toval et al. 2014). In one study, isolates of E. coli strains 
from retail meats and ready-to-eat foods were found to be genetically related to 
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strains from women with UTIs, suggesting that foodborne transmission may play a 
role (Vincent et al. 2010). In another study, women with UTIs caused by antimicrobial 
resistant E. coli reported consuming poultry and pork more frequently than women 
with UTIs caused by fully susceptible E. coli, suggesting meat as a potential reser-
voir (Manges et al. 2007). Based on this evidence, it has been hypothesized that, in 
foodborne UTIs (FUTIs), the patient is exposed to ExPEC through food, the gut is 
colonized, and the pathogen is subsequently transferred to the urinary tract 
(Nordstrom et al. 2013); however, additional studies are needed.

9.3.7  Malnutrition and Growth Impairment

Childhood growth impairment is a topic of big concern given the high prevalence of 
stunted children under 5 years of age; a 2017 report estimated that 115 million chil-
dren worldwide are stunted (UNICEF, WHO, World Bank Group 2017). Previous 
published findings suggest that childhood stunting is associated with poor cognitive 
development (Grantham-McGregor et al. 2007; Walker et al. 2011; Prendergast and 
Humphrey 2014; Prendergast et al. 2015), increased morbidity and mortality from 
infectious and chronic diseases (Caulfield et al. 2004; De Boer et al. 2012; Guerrant 
et al. 2008; Prendergast and Humphrey 2014), as well as reduced incomes through-
out life (Prendergast and Humphrey 2014). However, the pathogenesis of childhood 
stunting is poorly understood (Owino et al. 2016). In the last several decades, vari-
ous epidemiological or intervention studies have extensively explored the relation-
ships of malnutrition and growth/stunting and infection/diarrheal disease and 
growth/stunting (Bhutta et al. 2013; Dewey and Adu-Afarwuah 2008; Richard et al. 
2013, 2014). However, the modest relationships with stunting suggest that, while 
nutrition and diarrheal disease are important factors for linear growth, they are not 
the only factors. This increased realization has encouraged researchers to delve 
more into potential pathways such as chronic gut injury with systemic inflammation 
and immunostimulation that can ultimately impair growth (Campbell et al. 2003; 
Mbuya and Humphrey 2016). Of particular interest is the hypothesis that exposure 
to poor sanitation and hygiene causes enteropathy in the gut that leads to stunting 
(Humphrey 2009). This enteropathy, which has been recently termed environmental 
enteric dysfunction (EED), has been associated with increased intestinal permeabil-
ity, impaired gut immune function, recurrent/persistent diarrhea, nutrient malab-
sorption, and stunting (Owino et al. 2016; Crane et al. 2015; Keusch et al. 2013; 
McCormick and Lang 2016). Multiple factors seem to contribute to EED including 
nutritional deficiencies, (asymptomatic) colonization by enteric pathogens, and 
environmental toxins such as mycotoxins (Prendergast et al. 2015). However, the 
relative contribution of each of the factors is unknown (Prendergast et  al. 2015; 
Kelly et al. 2004). Recently, the MAL-ED study identified a high Campylobacter 
prevalence in primarily asymptomatic children in eight low-resource settings being 
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associated with a lower length-for-age Z score, increased intestinal permeability, 
and intestinal and systemic inflammation at 24 months of age (Amour et al. 2016).

Many chemical hazards are assumed to increase the risk for chronic diseases, 
including malnutrition and growth impairment. For example, mycotoxin contami-
nation can cause various health issues and economic losses worldwide. Mycotoxins 
are toxic secondary metabolites produced by fungi that commonly contaminate 
foods such as maize, peanuts, and cereal grains (Wu 2013); 25% of the world’s crop 
are contaminated with mycotoxins (Reddy et al. 2010), and high levels are reported 
for sub-Saharan Africa, Asia, and Central America. Developing countries with trop-
ical climates (high temperature and humidity) are particularly impacted by myco-
toxin contamination (Reddy et al. 2010), and over 4.5 billion people are at risk for 
chronic aflatoxin exposure through food (Centers for Disease Control and Prevention 
(CDC) 2012). Despite the significant public health impact (Wild and Gong 2010), 
very few epidemiological studies have explored the longitudinal relationships of 
mycotoxin exposure on health outcomes and, particularly, childhood growth impair-
ment. Current findings suggest exposure to mycotoxins— including aflatoxins and 
fumonisins—is associated with several serious health outcomes, including adverse 
birth outcomes, childhood stunting, impaired nutrient absorption, immune suppres-
sion, mental impairment, liver disease, and cancer (Wu 2013; Alborzi et al. 2006; 
Food and Drug Administration (FDA) 2012; International Agency for Research in 
Cancer (IARC) 1993; Shuaib et  al. 2010; Smith et  al. 2012; Turner et  al. 2007; 
Turner 2013). Potential biological mechanisms/pathways related to mycotoxins 
exposure and child growth impairment are less well understood. Hence, well- 
characterized epidemiological studies with multiple exposures/biomarkers and in 
multi-country settings (such as MAL-ED) can provide valuable insights into the 
contribution of mycotoxins and EED, along with various factors, in the pathogene-
sis of childhood stunting and burden of disease calculation.

9.4  Exploring the Association of Health Outcomes

As Sect. 9.3 has shown, there are a large number of health outcomes that are poten-
tially associated with foodborne hazards. Establishing this association is, however, 
not always straightforward. In this section, we describe and discuss the methods that 
are used for establishing such associations and argue for scenario analyses to evalu-
ate potential uncertainties and knowledge gaps.

The first, and most straightforward, method for causal attribution is categorical 
attribution. This approach can be used when a foodborne hazard results in an out-
come (death or a specific symptom) that is identifiable as caused by the hazard (and 
only the hazard) in individual cases (Devleesschauwer et al. 2015). For instance, an 
individual diarrhea case may be attributed to Salmonella based on laboratory confir-
mation, or an anaphylactic reaction may be attributed to peanut exposure based on 
anamnesis.
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When the foodborne hazard elevates the risk of an outcome that occurs from 
other causes as well, causal attribution can no longer be made on a case-by-case 
basis but, only statistically, at a population level (Devleesschauwer et al. 2015). 
For instance, T. gondii is reported to increase the risk of schizophrenia and other 
psychological disorders (Sutterland et al. 2015), but it is not possible to attribute an 
individual case of schizophrenia to T. gondii infection. Likewise, aflatoxin may 
increase the risk of hepatocellular carcinoma, but it is not possible to specify that a 
specific liver cancer case was caused by aflatoxin since (1) there is a long latency 
period between the exposure and the development of cancer and (2) many other 
exposures and/or genetic risk factors could have caused the liver cancer. In this situ-
ation, the standard approach for calculating the burden of foodborne disease is to 
use a counterfactual analysis in which the current disease outcomes with current 
exposure are statistically compared to the disease outcomes under an alternate expo-
sure (a minimum risk exposure which could be zero or some accepted background 
level) (Prüss-Üstün et  al. 2003). This allows calculation of the relative risk and 
population attributable fraction, which are population-level metrics of the associa-
tion between the foodborne hazard and the associated outcome. Specifically, the 
relative risk is defined as the ratio of the outcome incidence among exposed indi-
viduals and the outcome incidence among non-exposed individuals. The population 
attributable fraction is a function of the relative risk and the exposure distribution 
and is defined as the proportion of incident cases that would be prevented in a popu-
lation if exposure could be reduced to the minimum risk exposure level. However, 
these metrics are generally obtained through observational studies, which demon-
strate association, but not necessarily causation. Information on the causal attribu-
tion between the concerned hazard-outcome pairs is therefore often limited. 
Furthermore, estimation of the relative risk, and thus the population attributable 
fraction, may be done under the competing assumptions of an additive versus a 
multiplicative model. The additive model assumes that RRAB, the expected RR for a 
person experiencing risk factor A and risk factor B, equals RRA + RRB − 1, while the 
multiplicative model assumes that RRAB equals RRA × RRB. Both assumptions can 
lead to widely varying estimates, thus resulting in important methodological uncer-
tainty. Finally, to calculate the burden of the concerned hazard-outcome pair, the 
population attributable fraction must be multiplied with the all-cause burden esti-
mates for the relevant disease outcome (the so-called burden envelope); for instance, 
the burden of T. gondii-associated schizophrenia is obtained by multiplying an all- 
cause schizophrenia burden estimate with the T. gondii population attributable frac-
tion. The counterfactual approach is, therefore, not only dependent on estimates of 
the population attributable fraction but also on the availability and quality of the 
concerned burden envelopes.

In cases where there are insufficient data for categorical attribution and counter-
factual analysis (considered top-down approaches)—this is the case for many food-
borne chemical hazards, risk assessment approach (considered a bottom-up 
approach) is often used (Devleesschauwer et al. 2015). The risk assessment approach 
is the standard methodology applied to assess the safety of human exposure to food-
borne chemicals and increasingly used for microbial risks. In this approach, the 
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incidences of the hazard-associated outcomes (e.g., diarrhea due to Salmonella 
exposure or liver cancer due to aflatoxin exposure) are estimated by combining 
exposure and dose-response data. The dose-response model may, for instance, 
define the probability of illness at a given exposure level, which can then be trans-
lated into an estimate of the number of incident cases expected to occur in the 
exposed population (Prüss-Üstün et al. 2003)). As this approach does not involve 
burden attribution, it does not necessarily ensure consistency with existing health 
statistics. Furthermore, the risk assessment approach is often limited by uncertainty 
on the dose-response relationship. For instance, when dose-response data are 
extracted from animal models, a tenfold correction factor is generally included to 
account for the potential differences between animals and humans and another ten-
fold factor for the difference between humans. This strategy is relevant when esti-
mating maximum allowable intake levels but might lead to overestimation when the 
aim is to assess true disease burden. Even when human dose-response data are used, 
these are not necessarily representative for the general population that is of interest 
in burden of disease studies. For example, when dose-response relationships are 
based only on data from high-exposure events, there may remain important uncer-
tainty in the lower end of the dose-response curve, which may be most relevant for 
the general population (Teunis and Havelaar 2000). For instance, Teunis et  al. 
(Teunis et al. 2012) developed a dose-response model for Trichinella spp. in humans 
based on published outbreaks of human trichinellosis; likewise, Crump et al. (Crump 
et al. 2003) developed a dose-response model for dioxin and cancer based on data 
from three occupationally exposed cohorts. Since these dose-response models were 
developed using data from high- exposure events, they may overestimate risk at 
lower exposure levels that may be more representative of exposure in the general 
population. When microbial dose- response relationships are based on data from 
human or animal feeding trials, the virulence and pathogenicity of the applied iso-
lates or their physiological state may not be representative for that of the isolates 
circulating in foods. For example, Teunis et al. (Teunis et al. 2002) explored the 
strain differences in available Cryptosporidium dose-response models. Chen et al. 
(Chen et  al. 2006) demonstrated that fresh (animal passaged) isolates of 
Campylobacter jejuni showed higher colonization potential in chickens and less 
within isolate variation than isolates that had been repeatedly subcultured in the 
laboratory.

In addition to the methodological issues that arise when modeling the association 
between foodborne hazards and health outcomes, causal attribution may also be 
hampered by ethical controversies. For instance, whether or not to include miscar-
riage and stillbirth in burden of disease calculations implies ethical and moral dis-
cussions on how the life, and death, of an embryo or fetus compares to that of a 
human after birth (Jamison et al. 2006; Phillips and Millum 2015). For this reason, 
many burden estimates exclude miscarriages and stillbirths.

Given the various sources of methodological and structural uncertainty regarding 
the association of health outcomes to foodborne hazards, a valid approach would be 
to generate estimates based on different, well-defined scenarios. Such scenario anal-
yses would allow the reader to assess the impact of alternating methodological and 
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structural choices and to adopt the estimates that correspond to what is deemed the 
most acceptable scenario. For instance, estimates could be generated using both a 
counterfactual and risk assessment approach, to assess the impact of different 
 methodological approaches (Jakobsen et  al. 2015). Likewise, estimates could be 
generated that either include or exclude an uncertain health outcome, allowing the 
reader to assess the impact of this uncertainty. For instance, Smit et al. (Smit et al. 
2017) showed that the disease burden of congenital toxoplasmosis in Belgium 
would be twice as high if fetal losses at ≥22 weeks of gestational age would be 
included.

9.5  Attributing the Burden of Foodborne Diseases to Specific 
Foods, Food Groups, or Reservoirs

While burden of disease estimates are crucial to raising awareness of foodborne 
diseases, estimating their public health impact, and ranking diseases according to 
their importance, they may be insufficient for policy making. To identify and priori-
tize food safety intervention strategies to prevent and reduce the burden of diseases 
in a population, knowledge on the most important sources of the causative food-
borne hazards is needed.

Several source attribution methods are available, including approaches based on 
the analysis of data from occurrence of hazards in foods and humans, epidemiologi-
cal studies, intervention studies, and expert elicitations. All methods present both 
advantages and limitations, and their utility and applicability depend on the public 
health questions being addressed and on characteristics and distribution of the 
 hazard (Table 9.2). As examples, epidemiological studies may be useful for source 
attribution of disease by microbiological hazards, which lead mostly to acute dis-
ease and thus enable an association of exposure to specific contaminated foods with 
the onset of symptoms; on the contrary, they are usually insufficient to attribute 
disease by chemical hazards, which is typically chronic and appears a long time 
after exposure. Additionally, methods have different data requirements and attribute 
human illness at either the point of production (reservoir) or of exposure to the food, 
and therefore their utility will vary depending on the hazard and/or the country or 
region in question (Pires 2013).

9.5.1  Overview of Source Attribution Methods

Approaches to source attribution can be grouped broadly into four categories: 
microbiological, epidemiological, expert elicitation, and intervention studies (Batz 
et al. 2005; Pires et al. 2009). Methods in all categories have been used to estimate 
the sources of several pathogens in different subpopulations (e.g., Salmonella, 
Campylobacter, L. monocytogenes). For chemical hazards, source attribution has 
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Table 9.2 Strengths and limitations of source attribution methods (adapted from (Pires 2013))

SA approach Strengths Limitations

Occurrence approaches

Subtyping 
approach

• Identifies the most important 
reservoirs of the hazard and therefore 
(1)  is useful to prioritize 

interventions at production level 
and 

      (2)  reduces uncertainty due to 
cross-contamination or spread to 
accidental sources

• Limited to hazards 
heterogeneously distributed 
among the reservoirs

• No information on 
transmission pathways from 
reservoirs to humans

• Data intensive, requiring a 
collection of representative 
isolates from all (major) 
sources

Comparative 
exposure 
assessment

• Accounts for different transmission 
routes from the same reservoir

• Easily updated

• Often limited by lack of data, 
resulting in large uncertainties

Epidemiological studies

Case-control 
studies 
(including 
systematic 
review)

• Able to identify variety of risk 
factors, including exposure routes, 
predisposing, behavioral, or seasonal 
factors

• A systematic review of published 
studies can be useful for regional 
analysis and may detect temporal 
and geographical variations

• Can identify a wide range of known 
and unknown risk factors

• Misclassification due to 
immunity may reduce 
attributable risk or suggest 
protection

• Most studies only explain a 
small fraction of all cases

• Cases may reflect a mixture of 
possible sources of exposure

• Misclassification due to recall 
bias may lead to an 
underestimation of the 
attribution proportion

Analysis of data 
from outbreaks

• Documentation that a hazard was 
transmitted to humans via a specific 
food item can be available

• Data may capture the effect of 
contamination at multiple points 
from the farm-to-consumption chain

• Wide variety of foods represented, 
including uncommon foods

• Most readily available information 
for source attribution in some 
countries or regions

• Quality of evidence varies
• Large outbreaks, outbreaks 

associated with point sources, 
outbreaks with short 
incubation periods, or more 
severe are more likely to be 
investigated

• Investigated cases may not be 
representative of all foodborne 
illnesses

• Certain pathogens and foods 
are more likely to be 
associated with reported 
outbreaks, which can lead to 
an overestimation of the 
attribution proportion

(continued)

9 Improving Burden of Disease and Source Attribution Estimates



160

Table 9.2 (continued)

SA approach Strengths Limitations

Intervention studies

• Allows for a direct measure of the 
impact of a source on the number of 
infections, avoiding accounting for 
the effect of external factors

• Interpretation of data from 
“large-scale” interventions is 
difficult, since usually several 
interventions are implemented 
at the same time

• Complex and resource 
demanding

Expert elicitations

• Allows for attribution to main 
transmission routes

• Useful tool when data is lacking
• May be the only available method for 

source attribution

• Conclusions are based on the 
individual experts’ judgment, 
which may be misinformed or 
biased

been done mostly unintentionally, i.e., as a part of methods applied for risk assess-
ment or burden of disease studies.

Microbiological approaches for source attribution include the subtyping approach 
and the comparative exposure assessment approach. Both involve the use of data on 
the occurrence of foodborne hazards in animal, food, and/or environmental sources. 
These data are ideally available from surveillance or monitoring programs in a 
country but may also be obtained through, e.g., targeted projects or literature review. 
The subtyping approach was designed to attribute human cases to the reservoir 
level, i.e., the closest possible to the origin of the pathogen, and gives no informa-
tion on the relative contribution of different exposure routes to humans. On the 
contrary, the comparative exposure assessment approach estimates the relative 
importance of different routes for exposure, including several routes from the same 
reservoir.

Epidemiological approaches comprise case-control studies of sporadic and anal-
yses of data from outbreak investigations. Case-control studies are useful to identify 
sources and risk factors for a disease, as well as the fraction of human cases that can 
be attributable to these (by estimating population attributable fractions, PAF). Even 
if case-control studies are not often conducted and are insufficient to extrapolate 
source attribution estimates at national level, a meta-analysis of several case-control 
studies (i.e., combining studies conducted in several countries) can be used to esti-
mate the number of illnesses attributable to each exposure at regional and global 
level. In contrast, foodborne outbreak data are widely available from most world 
regions. Outbreak investigations are often able to identify the contaminated source 
or ingredient that caused infections, and an analysis of these data can show the rela-
tive contribution of the most important sources of disease. These analyses can be 
done at national, regional, and global levels, and, despite the limitations of assum-
ing that outbreak data are representative of all cases in the population (i.e., also of 
sporadic cases of disease), outbreak attribution analyses are useful evidence for 
source prioritization.
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Expert elicitations can be used to estimate the proportion of illnesses that are 
attributed to foodborne, environmental, contact with animals, environmental, or 
human-to-human transmission pathways (Hald et al. 2016).

Source attribution can take place at different points along the food chain (points 
of attribution), including at the origin of the pathogen, i.e., the point of reservoir, 
such as the animal production stage, or at the point of exposure, such as the food 
consumption stage. The different source attribution methods attribute disease at dif-
ferent points and will as mentioned depend on the availability of data and on the risk 
management question being addressed.

9.5.2  Attribution to Main Types of Transmission

The first step in the source attribution process is to estimate the overall proportion 
of the burden of disease that can be attributed to the four main transmission routes, 
i.e., foodborne, environmental, direct contact to animals, and person-to-person. For 
most foodborne hazards, data-driven methods, based, for example, on surveillance 
and monitoring data, would require an exhaustive review and inclusion of all poten-
tial sources and pathways within these main routes and consequently are not the 
most appropriate tool for this initial step when applied individually. A combination 
of epidemiological methods could provide a more adequate picture of the relative 
importance of the types of transmission, namely, a combination of an analysis of 
outbreak data and of studies of sporadic cases. For hazards that are transmitted 
through a limited number of routes (e.g., Brucella spp.), the application of one epi-
demiological approach for source attribution may be sufficient. Alternatively, two 
methods are currently available to attribute disease to these main routes: expert 
elicitations and intervention studies.

Attribution of foodborne disease to food and other transmission routes could be 
undertaken for individual foodborne hazards or for syndromic groups, e.g., diarrheal 
disease. In both cases, expert elicitations can be conducted at a country or regional 
level, whereas interventions are optimally designed as small scale population- based 
studies. The latter are additionally expensive and difficult to apply.

The WHO-FERG has undertaken a large-scale expert elicitation to attribute dis-
ease by 19 foodborne hazards to main transmission groups at a global, regional, and 
subregional level (Hald et al. 2016; Havelaar et al. 2015). The study applied struc-
tured expert judgment using Cooke’s Classical Model (Cooke 1991) to obtain esti-
mates for the relative contributions of different transmission pathways for 11 
diarrheal diseases, 7 other infectious diseases, and 1 chemical (lead). Experts were 
selected based on their experience including international working experience and 
included in ten global panels or nine subregional panels. This study presented the 
first worldwide estimates of the proportion of specific diseases attributable to food 
and other major transmission routes. Other expert elicitations have been conducted 
to deliver similar estimates but at a national level, specifically in the Netherlands 

9 Improving Burden of Disease and Source Attribution Estimates



162

and in Canada (Davidson et al. 2011; Havelaar et al. 2008; Lake et al. 2010; Vally 
et al. 2014). Similar country-specific initiatives will be useful to improve estimates 
and reduce uncertainties.

9.5.3  Attribution to Specific Foods and Exposure Routes

As mentioned before, the risk management question, the characteristics of the haz-
ard causing the disease, and the data available influence the utility of source attribu-
tion methods. When more than one source attribution method proves useful, the 
final choice of method will be determined by the question that needs answering and 
will be influenced by the analytical capacity in a country and the level of data shar-
ing between agencies.

The type of reservoir of the hazard will influence the applicability of some source 
attribution methods, particularly the subtyping approach. This approach applies to 
hazards with one or more animal reservoirs, to which disease can be traced back and 
where the hazard can potentially be controlled. All other approaches are, in princi-
ple, applicable regardless of the origin of the hazard, since they focus on routes of 
transmission or the point of exposure.

There may also be differences in the utility of methods for regional or national 
level. In general, epidemiological approaches, specifically analysis of outbreak data 
and systematic review and meta-analysis of case-control studies of sporadic infec-
tions, are useful for source attribution at a regional level when data are not available 
a country level.

The applicability and usefulness of the source attribution methods vary for 
enteric, parasitic, and chemical hazards. The subtyping approach is appropriate to 
attribute human disease for an enteric pathogen if that pathogen has mainly an ani-
mal reservoir, can be subtyped by appropriate discriminatory methods, and subtyp-
ing data are available. This has been verified for only two pathogens (Salmonella 
spp. and Campylobacter spp.) (Pires 2013). For the majority of the remaining 
enteric hazards, source attribution by an analysis of data from outbreak investiga-
tions is appropriate. The comparative exposure assessment approach has been shown 
to be useful for attributing infections by pathogens that are mostly transmitted by a 
limited number of food routes, namely, STEC, L. monocytogenes, and Brucella 
(Food and Drug Administration (FDA) 2003; Kosmider et al. 2010); it has also been 
applied to other pathogens, e.g., Campylobacter (Evers et  al. 2008; Pintar et  al. 
2017). A systematic review of epidemiological studies of sporadic infections can be 
useful for enteric hazards that have been extensively studied throughout the world 
(Domingues et al. 2012a, 2012b).

For chemical hazards, the comparative exposure assessment approach is the most 
appropriate method to attribute disease and is also often done as part of the method 
applied to estimate the burden of disease caused by exposure to the hazard through 
multiple food routes. Given the availability of data, this approach is of simple appli-
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cation. Epidemiological studies, particularly cohort studies, have been undertaken 
for some of these chemicals, and a review of these could be useful for source attri-
bution. However, because disease caused by chemicals often appears a long time 
after exposure, epidemiological studies may have challenges identifying cases and 
sources.

9.5.4  Challenges and Future Directions in Source Attribution

Controlling foodborne diseases and thus improving food safety requires efforts at 
several levels. All research and risk management initiatives, including the ones rely-
ing on source attribution studies, are dependent on efficient surveillance, which has 
been the target for improvements and investments throughout the world, either 
through national, regional, or capacity building initiatives. Multinational organiza-
tions such as WHO at the international level and the European Food Safety Authority 
(EFSA) and the European Centre for Disease Prevention and Control (ECDC) at the 
regional level play an increasingly important role in the harmonization of surveil-
lance statuses across countries and will be crucial to encourage countries to invest 
in the integration of food safety components.

In developed countries, improvements in surveillance have been largely focused 
on the development and use of sophisticated typing methods (e.g., molecular tech-
niques), which have substantially increased the opportunities for research and the 
production of scientific evidence for interventions. Recently, whole genome 
sequencing (WGS) has opened yet another spectrum of possibilities, providing new 
and faster ways to diagnose, monitor, and track foodborne pathogens. We are now 
witnessing extensive research on the applications of these methods, particularly on 
how to best use WGS in surveillance and how to translate these data into useful 
epidemiological evidence.

Several factors have favored the use of such techniques in foodborne disease 
surveillance: (1) WGS has become mature and has been increasingly introduced in 
routine laboratories; (2) the price of WGS has been falling dramatically, in some 
cases, below the price of traditional identification; (3) the availability of a vast 
amount of IT resources and a fast Internet; and (4) the idea that, via a One Health 
approach, infectious diseases could be better controlled and prevented (Global 
Microbial Identifier (GMI) 2013). In this context, initiatives to harmonize method-
ologies and data collection and sharing are crucial. An example is the Global 
Microbial Identifier, a genomic epidemiological database for global identification 
of microorganisms which is a platform for storing WGS data of microorganisms, 
for the identification of relevant genes, and for the comparison of genomes to 
detect outbreaks and emerging pathogens (http://www.globalmicrobialidentifier.
org).

Traditional microbiological foodborne disease surveillance systems have relied 
on the collection of samples at different stages of the food production chain,  isolation 
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and quantification of foodborne pathogens in these samples, and typing of these 
with different methods of phenotypic or genotypic characterization. The recent 
development of molecular typing methods is changing the way surveillance systems 
work. These changes may be particularly relevant in developing countries where 
surveillance of foodborne diseases is still behind with regards to their ability to 
diagnose/identify specific causes of disease. In these countries where systems are 
not yet entrenched, affordable WGS may represent a significant technological 
shortcut.

In the context of burden of disease and source attribution, opportunities are 
immense but are still to be explored. Along with pathogen characterization tech-
niques and surveillance, the scientific methods available to produce evidence for 
food safety interventions are also likely to change. This will require extensive 
research. A major challenge of using data generated from molecular typing meth-
ods, and in particular WGS, will be to define meaningful subtypes to provide appro-
priate level of discrimination for source attribution models (European Food Safety 
Authority Panel on Biological Hazards (EFSA) 2013). Such research will also 
depend on the accessibility to potential enormous amounts of data that needs to be 
compiled, analyzed, and shared among the scientific community. Developing such 
a coordinated system is timely and should be carried out at a global level.

9.6  Conclusion

In a world of limited resources, policy makers are constantly being asked to priori-
tize the allocation of resources to efforts. Should they allocate resources to prevent-
ing this disease or another one? Which intervention strategies should they invest in? 
Burden of disease estimates provide policy makers a quantitative measurement of 
the impact on public health, while source attribution estimates provide information 
on where to intervene. Significant advancements have recently been made in under-
standing the burden and sources of foodborne illness, but there is still room for 
improvement. Public health surveillance is an important source of data for disease 
burden and attribution studies, but few countries have the infrastructure needed to 
reliably provide such data. Even in countries that do have strong surveillance sys-
tems, there are still significant gaps in understanding and a need for constant 
improvement as clinical and laboratory practices evolve (e.g., CIDTs, WGS). 
Important epidemiologic gaps also remain about the burden of foodborne disease, 
particularly for chemical foodborne hazards and the long-term health impact of all 
foodborne pathogens. As a result, these health impacts are often not included in 
estimates, leading to underestimates of the burden of disease. There are significant 
opportunities to improve the ability of policy makers to effectively allocate resources 
by expanding our understanding of the burden and sources of foodborne disease, but 
this will require substantial investments in surveillance and research.
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