
Contents lists available at ScienceDirect

Food and Chemical Toxicology

journal homepage: www.elsevier.com/locate/foodchemtox

Investigating the risk-benefit balance of substituting red and processed meat
with fish in a Danish diet

Sofie Theresa Thomsena,∗, Sara Monteiro Piresa, Brecht Devleesschauwerb,c, Morten Poulsena,
Sisse Fagtd, Karin Hess Ygild, Rikke Andersena

a Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kgs. Lyngby, Denmark
bDepartment of Epidemiology and Public Health, Sciensano, Juliette Wytsmanstreet 14, 1050, Brussels, Belgium
c Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
d Division of Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kgs. Lyngby, Denmark

A R T I C L E I N F O

Keywords:
Risk-Benefit Assessment (RBA)
Disability-Adjusted Life Year (DALY)
Health impact
Dietary guidelines
Exposure
Substitution

A B S T R A C T

Danish dietary guidelines recommend the Danish population to increase the consumption of fish while de-
creasing the consumption of red and processed meat to prevent nutrition-related diseases. However, the presence
of contaminants in these foods may affect the overall risk-benefit balance of such substitution. We performed a
quantitative risk-benefit assessment on substituting red and processed meat with fish in a Danish diet. We
modeled the substitution among Danish adults based on data from a Danish dietary survey and compared four
alternative scenarios based on varying chemical and nutrient exposures to the current consumption. We quan-
tified the overall health impact of the substitutions in terms of Disability-Adjusted Life Years (DALYs).
Approximately 150 DALYs/100,000 individuals could be averted each year if Danish adults consumed 350 g of
fish/week (fatty or mix of fatty and lean) while decreasing the consumption of red and processed meat. A lower
beneficial impact was observed when consumption of fish was restricted to lean fish (80 DALYs/100,000
averted), and a marked health loss (180 DALYs/100,000) was estimated when consumption was restricted to
tuna. Our results show an overall beneficial effect of the substitution if the consumption of large predatory fish is
low and at least half is fatty fish.

1. Introduction

Fish consumption and its associated health effects have been ex-
tensively studied during the last decades (EFSA Scientific Committee,
2015). The beneficial effects of fish consumption are well established;
however, so is the presence of various contaminants in fish such as
methyl mercury (MeHg) and dioxins, potentially causing adverse effects
on human health (FAO/WHO, 2011). Risk-benefit assessment (RBA) is a
tool used for weighting the risks and benefits of food consumption, and
several RBAs have addressed the dual role of fish consumption on
human health (Becker et al., 2007; Berjia et al., 2012; Cohen et al.,
2005; Domingo, 2016; EFSA Scientific Committee, 2015; FAO/WHO,
2011; FDA, 2014; Gao et al., 2015; Hellberg et al., 2012; Hoekstra et al.,
2013; Hsi et al., 2016; Jacobs et al., 2017; Persson et al., 2018; Sirot
et al., 2012; van der Voet et al., 2007; VKM, 2014; Zeilmaker et al.,
2013). By qualitatively or quantitatively weighting the adverse health
effects associated with contaminants in fish against the beneficial
health effects associated with fish consumption, these RBAs have

investigated whether increased fish consumption has a net beneficial or
adverse effect on human health. The vast majority only dealt with fish
alone and did not take substitution of other foods into consideration.
However, increased consumption of fish is expected to lead to a de-
crease in the consumption of other foods, which may also be associated
with risks and benefits that need to be addressed. The Danish food-
based dietary guidelines (FBDG) of 2013 recommend an intake of 350 g
of fish/week of which 200 g should be fatty fish. At the same time, the
intake of red and processed meat is recommended to not exceed 500 g/
week, and the intake of processed meat should be limited (Tetens et al.,
2013a). One way for individuals that do not reach the recommended
fish intake and that surpass the one for meats to fulfill these guidelines
would be by substituting red and processed meats with fish.

Quantification of the risk-benefit balance of foods for defining and
supporting dietary guidelines has previously been encouraged (Rideout
and Kosatsky, 2017). In addition, the need for national estimates of
disease burden and risk-benefit balance of food for public health policy
has been stressed (Devleesschauwer et al., 2014b; Jacobs et al., 2017).
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The Disability-Adjusted Life Year (DALY) is a composite health metric
commonly used in RBA and is also the preferred metric used for the
World Health Organization estimates of the global burden of foodborne
diseases (Devleesschauwer et al., 2015) and the Global Burden of Dis-
ease Study (Hay et al., 2017). It combines information on incidence,
severity and duration of a disease or disability (Years Lived with Dis-
ability, YLD) with the standard expected Years of Life Lost (YLL) due to
premature death and allows for a comparison across diseases
(Devleesschauwer et al., 2014a). The difference in the sum of DALYs
between a given reference scenario and one or more alternative sce-
narios gives information on an overall health gain or loss by a theore-
tical intervention in a population, expressed in loss of healthy life years.

In this study, we quantified the health impact of substituting red and
processed meat with fish in the diet of the adult Danish population
using DALYs as a common health metric. We compared the current
consumption of fish and red and processed meat with four alternative
scenarios in which red and processed meat were substituted with fish
and the consumption of different fish species was considered.

2. Methods

2.1. Identification of relevant health effects

The relevant health effects associated with consumption of fish and
red and processed meat were identified on the basis of official assess-
ments by national and international authorities, regulatory agencies
and expert groups within nutrition, toxicology, and medicine (EFSA
CONTAM Panel, 2012; EFSA NDA Panel, 2014; EFSA Scientific
Committee, 2015; FAO/WHO, 2011; FAO, 2010; JECFA, 2002; Larsen
and Nørhede, 2013; Norat et al., 2015, 2010; Nordic Council of
Ministers, 2014; Scientific Committee on Food, 2000, 2001; US EPA,
2012; Van Horn et al., 2008; VKM, 2014; WCRF/AICR, 2007). In ad-
dition, we performed a literature search for more recent systematic
reviews and meta-analyses published after the literature search of the
Norwegian Scientific Committee for Food Safety on April 1st, 2014
(VKM, 2014) for fish, and after the search of the Evidence Report be-
hind the Danish FBDG on October 15th, 2012 (Tetens et al., 2013a) for
red and processed meat. The search was conducted on June 18th, 2016
and covered articles published up to that date. Health effects were in-
cluded in the assessment if the epidemiological evidence was graded as
“convincing” or “probable” according to the criteria set by the World
Health Organization (WHO)/Food and Agriculture Organization of the
United Nations (FAO) (WHO, 2003). The evidence for toxicological
health effects, however, in many cases cannot be graded higher than
“possible” due to the constraints of studies investigating such effects
(experimental animal studies, human case-control or cross-sectional

studies). We chose to include health effects associated with tox-
icological hazards that were considered the most sensitive in animals
and/or humans as defined for the establishment of health-based gui-
dance values based on No/Lowest Observed Adverse Effect Levels. The
health effects included in the RBA are listed in Table 1.

The health effects associated with fish consumption are mainly
linked to the presence of nutrients and chemical contaminants in fish.
Based on available evidence, we evaluated health effects associated
with the chemical contaminants dioxin and dioxin-like (dl-) poly-
chlorinated biphenyls (PCBs) and MeHg, and two n-3 long-chain
polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosa-
pentaenoic acid (EPA) (Table 1). The concentration of these compounds
varies among fish species, and is dependent on the content of fat and
muscle tissue. Specifically, the concentrations of dioxins, EPA and DHA
are higher in fatty fish species, whereas MeHg accumulates in muscle
tissue and is therefore found at higher concentrations in larger pre-
datory fish species (EFSA CONTAM Panel, 2012; EFSA Scientific
Committee, 2015). As identified by the Norwegian Scientific Committee
for Food Safety, other contaminants than MeHg, dioxin and dl-PCBs are
present in fish, such as polybrominated flame retardants and fluori-
nated substances. However, exposure to these contaminants from fish
was considered very low compared to the toxicity levels of these con-
taminants, and thus they were not considered as of concern (VKM,
2014).

Various components have been suggested to associate consumption
of red and processed meat with cancer, e.g. fat, protein, heme iron, and
various contaminants such as N-nitroso compounds, heterocyclic
amines, and polycyclic aromatic hydrocarbons (Bouvard et al., 2015;
Domingo and Nadal, 2017; Norat et al., 2010; WCRF/AICR, 2007).
However, although mechanistic evidence for the association between
these individual components and cancer exists, their contribution to
and the mechanism behind the observed association between con-
sumption of red and processed meat and cancer is not known (Bouvard
et al., 2015; Norat et al., 2010; WCRF/AICR, 2007). Thus, we chose to
base our modeling of the meat-associated health impact on red and
processed meat as whole foods in this study (Table 1).

Both fish and red meat are also important sources of various mi-
nerals and vitamins. Red meat is an important contributor to the intake
of especially B vitamins, iron, zinc, and selenium, and fish is an im-
portant source of vitamin D and selenium in the Danish diet (Pedersen
et al., 2015). Due to methodological difficulties in assessing deficiency
of iron, a particularly central micronutrient present in red meat, from
dietary sources, and due to lack of good dose-response relationships to
characterize the risks associated with iron deficiency (The Scientific
Advisory Committee on Nutrition, 2010) it was not possible to quantify
the health impact of potential changes in iron intake due to the

Abbreviations

AI Adequate Intake
Bw Body weight
CHD Coronary Heart Disease
CONTAM Contaminants in the Food Chain
CRC Colorectal Cancer
DALY Disability-Adjusted Life Year
DANSDA Danish National Survey of Diet and Physical Activity
DHA Docosahexaenoic Acid; dl-PCB: Dioxin-Like

Polychlorinated Biphenyls
DW disability weight
EFSA European Food Safety Authority
EPA Eicosapentaenoic Acid
FAO Food and Agriculture Organization of the United Nations
FBDG Food-Based Dietary Guidelines
IQ Intelligence Quotient

LE Life Expectancy
MeHg Methyl Mercury
NDA Dietetic Products, Nutrition, and Allergies
P10 10th Percentile
P50 50th Percentile
P90 90th Percentile
RBA Risk-Benefit Assessment
RR Relative Risk
SC Stomach Cancer
SD Standard Deviation
TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin
TEF Toxic Equivalency Factor
TEQ Toxic Equivalents
TWI Tolerable Weekly Intake
WHO World Health Organization
YLD Years Lived with Disability
YLL Years of Life Lost
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substitution. In order to not introduce bias due to inconsistency in in-
cluded and excluded micronutrients, we chose not to consider the
beneficial health effects associated with any micronutrients in this
study. Furthermore, it was beyond the scope of the present study to
assess acute adverse effects associated with microbiological con-
taminations potentially present in fish and meat.

2.2. Data used in the model

Consumption data from the Danish National Survey of Diet and
Physical Activity (DANSDA), 2011–2013, were used for estimating the
individual mean daily consumption of fish and meat in the Danish
population (Pedersen et al., 2015). DANSDA is a nation-wide, cross-
sectional survey of diet and physical activity in a representative sample
of individuals in the Danish population, drawn from random sampling
from the civil population registration system. The participants an-
swered a pre-coded semi-closed food diary consisting of categories with
common foods and dishes in the Danish diet (Knudsen et al., 2011). In
our study, data were restricted to individuals that 1) reported for all
(consecutive) 7 days, 2) had information on body weight, and 3) were
at or above 15 years of age, giving a total population sample of 2811
individuals.

Concentration data for both nutrients and contaminants were ob-
tained from Danish food monitoring (DTU, 2017; Larsen et al., 2002;
Petersen et al., 2015b, 2015a). These data represent samples taken from
foods of both Danish and non-Danish origin on the Danish market
(DTU, 2017; Larsen et al., 2002; Petersen et al., 2015b, 2015a). When
information on the number of samples from different sources of food
sampling was available, a mean weighted by the number of samples
across food sampling sources was applied. If the number of samples was
not available, all data sources were given the same weight.

We assumed that fish is the only source of DHA and EPA (see Table
S2), even though a limited amount of α-linoleic acid, found in various
plant oils, can be converted into DHA and EPA (FAO, 2010). Likewise
we did not include DHA and EPA intake from supplements. A minimum
daily intake of approximately 250mg DHA and EPA for adult men and
non-pregnant/non-lactating women and 300mg DHA plus EPA for
pregnant/lactating women was recommended by FAO in 2010 (FAO,
2010). The European Food Safety Authority (EFSA) Panel on Dietetic
Products, Nutrition, and Allergies (NDA) proposed the same year to set
an adequate intake (AI) of 250mg DHA plus EPA/day for adults and an
additional 100–200mg preformed DHA/day for pregnant and lactating
women (EFSA NDA Panel, 2010).

As for DHA and EPA, fish and other seafood are the only significant
source of human MeHg exposure (see Table S5). MeHg is the most
common form of organic mercury in food and constitute 80–100% of
total mercury in fish and 50–80% in other seafood according to the
EFSA Panel on Contaminants in the Food Chain (CONTAM) (EFSA
CONTAM Panel, 2012). When concentration data were only available
for total mercury, we applied a conservative approach, i.e. we assumed
that 100% and 80% of total mercury in fish and shellfish, respectively,
is MeHg to avoid underestimating the health impact associated with
MeHg exposure through fish consumption. The tolerable weekly intake
(TWI) for MeHg was set to 1.3 μg/kg bw by the EFSA CONTAM panel in
2012 (EFSA CONTAM Panel, 2012). The TWI corresponds to a daily
exposure of 0.19 μg/kg bw.

Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-
furans – hereafter referred to as dioxins – and dl-PCBs are persistent
organic pollutants that remain in the environment for long periods of
time. Dl-PCBs are PCBs that elicit toxicological responses similar to
those by the most toxic congener of dioxins, 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) (FAO/WHO, 2011). Exposure to a mixture of dioxin
and dl-PCBs is usually estimated in terms of Toxic Equivalents (TEQs).
TEQs are defined as the product of the concentration of each congener
by it specific Toxic Equivalency Factor (TEF) (WHO, 2000). The TEF of
a compound indicates the potency of the given compound relative to

TCDD, which has a reference value of 1 (Ahlborg et al., 1992; IARC,
1997). The exposure to dioxin and dl-PCBs is collectively assessed by
using concentration data for total TEQ, based on TEFs set by WHO in
2005 (Van den Berg et al., 2006). Humans are primarily exposed to
dioxin and dl-PCBs from animal sources, such as fish, meat, and dairy
products but also from other foods and the environment (Larsen and
Nørhede, 2013). We only assessed the food-associated exposure to di-
oxin and dl-PCBs in this study. Concentrations of dioxin and dl-PCBs
were given per g of fresh weight for fish and seafood (see Table S5) and
per g of fat for other foods (see Table S4). Thus, the absolute con-
centrations of dioxins and dl-PCBs in other foods than fish were cal-
culated based on the fat contents of these foods. A TWI of 14 pg TEQ/kg
bw (corresponding to on average 2 pg TEQ/kg bw/day) was established
for dioxin and dl-PCBs by the Scientific Committee on Food, European
Commission in 2001 (Scientific Committee on Food, 2001).

Data on incidence and mortality of studied health outcomes/dis-
eases for 2015 were obtained from Danish health registries via the
Danish eHealth Authority (The Danish National eHealth Authority, The
Danish National eHealth Authority). Population statistics for 2015 were
obtained from Statistics Denmark (Statistics Denmark) (see Table S6).

2.3. Alternative scenarios

We defined four alternative scenarios to be compared with the
current consumption of fish and meat in the Danish population. The
alternative scenarios were based on the recommended minimum
weekly intake of 350 g of cooked/prepared fish and a maximum weekly
intake of 500 g of cooked red meat and processed meat as advised in the
Danish FBDG (Pedersen et al., 2015; Tetens et al., 2013a). Fish and
meat intake amounts per individual were given in cooked/prepared
weights in DANSDA 2011–2013. To determine food intakes in the al-
ternative scenarios, we gave the dietary guideline on fish the highest
priority. Consequently, individual consumptions below 350 g/week
were increased to this level whereas no changes were made for in-
dividuals already consuming 350 g of fish/week or more. Based on
assumptions on portion sizes (see Table S7) we estimated that a fish
intake of 350 g/week can be achieved by consuming fish in two hot
meals (100 g each) and five cold meals (five half Danish open-faced
sandwiches, 30 g each) per week.

The increase in individual fish consumption was compensated by
decreasing the consumption of red and processed meat. However, if the
decrease in red or processed meat consumption for an individual was
larger than the current consumption, meat consumption was set to zero.
The consumption of red and processed meat was decreased according to
the increase in fish consumption at the individual level by applying
substitution factors. The substitution factors relied on the assumption
that non-processed red meat is only consumed in hot meals and will be
substituted by fish mainly consumed in hot meals, while processed meat
is mainly consumed in cold meals and will be substituted by fish nor-
mally only consumed in cold meals in a Danish diet. The substitution
factors were derived based on differences in typical portion sizes of fish,
red meat, and processed meat (see Table S7) (Ygil, 2013). The sub-
stitution factor used for substituting red meat with fish consumed in hot
meals was 1.07, and the substitution factor for substituting processed
meats with fish consumed in cold meals was 3. In other words, e.g. 10 g
of processed meat (such as a slice of ham on a Danish open-faced
sandwich), would be substituted by 30 g of fish consumed for cold
meals (such as pickled herring).

We differentiated between fatty and lean fish, and specifically ad-
dressed tuna, a large predatory fish, in the alternative scenarios. Fish
species were categorized into lean fish (≤5% fat) and fatty fish (> 5%
fat) (VKM, 2014). Red meat was defined as beef, pork, lamb, and goat,
and processed meats included any meats preserved by smoking, curing,
salting, or addition of chemical preservatives (both red meat and
poultry) (WCRF/AICR, 2007). Game meat was also considered red
meat. The ratio between red and processed meat was kept constant for
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each individual in all four alternative scenarios and was determined by
the amount of meat consumed before substitution and the type of fish
(for cold or hot meals) increased in the alternative scenarios. Thus, the
four alternative scenarios only differed from each other in terms of fish
species consumed.

The following scenarios were compared to the current Danish con-
sumption of fish (reference scenario):

- Alternative scenario 1: consumption of 350 g of a mix of lean and
fatty fish/week

- Alternative scenario 2: consumption of 350 g of fatty fish/week.
- Alternative scenario 3: consumption of 350 g of lean fish/week.
- Alternative scenario 4: consumption of 350 g of tuna/week.

Thus, the fish consumed before substitution was also changed ac-
cording to these fish species in the alternative scenarios. All alternative
scenarios considered the same individual decreases in consumption of
red and processed meat as a result of the substitution with fish, which
was compared to the current consumption of red and processed meat.
The proportions of the individual fish species eaten within each of the
four alternative scenarios were based on the current preferences for the
major fish species consumed in the Danish population (see Table S8).

2.4. Exposure to food, nutrients and contaminants

Observed individual mean daily consumption over 7 days was cal-
culated based on individual-level consumption data from DANSDA
2011–2013 and considered a representative estimate of habitual (long-
term) daily consumption in the Danish adult population (≥age 15
years) (Bingham et al., 1994). In order to keep information on the dish
and meal in which the food was consumed, consumption of individual
foods was estimated based on data on meals. In other words, we used
consumption data at the level of foods as consumed (e.g. pizza), and the
intake of individual ingredients was estimated based on recipes (see
Table S9, Table S10, and Table S11).

Consumption data for foods other than fish and meat contributing to
dioxin exposure were provided on an ingredient level (e.g. milk and
dairy products) due to the dispersion of these foods throughout the diet.
Ingredient level consumption data were given as (primarily) raw
weights (see Table S3).

Before estimating the exposure to contaminants and nutrients, fish
and red meat intakes were converted into raw weights, assuming a
water loss of 20% for fish and 25% for red meat. We assumed that
preparation or cooking of foods does not cause a loss of the con-
taminants and nutrients in the foods considered in this study (Pedersen
et al., 2015). Concentration data for nutrients and contaminants were
available for processed meat, thus this type of meat was not converted
into raw weights.

Exposure to contaminants was expressed per kg body weight (bw).
The individual mean daily exposures to chemicals were estimated by
the following equation:

∑
⋅I C
bwn

n n

where In is the individual mean daily intake of food n in g/day, Cn is the
mean concentration of the chemical in food n (in μg/g for MeHg and pg
TEQ/g for dioxin and dl-PCBs) and bw is the body weight of the given
individual in kg.

Exposure to nutrients was not expressed per kg bw as for chemicals,
but in absolute exposure. The individual mean daily exposure to nu-
trients was estimated as follows:

∑ ⋅I C
n

n n

where In is the individual mean daily intake of food n in g/day, Cn is the
mean nutrient concentration in food n (in mg/g for DHA and EPA).

Exposure modeling was done by sex and 13 age groups (see Table
S1). In order to also include individuals above the age of 75 years, the
consumption data for 75 year-old participants were additionally ex-
trapolated to ages> 75 years, assuming similar consumption patterns.

Exposure was modeled by combining probabilities of exposure with
(positive) exposure amounts. Probability of exposure was described by
a Bernoulli distribution and exposure amounts by either a lognormal or
Gamma distribution depending on the best fit according to Cramér-von
Mises and Anderson-Darling goodness of fit tests. In the alternative
scenarios, the empirical distributions were used for describing fish
consumption and exposure to DHA and EPA, and MeHg due to a poor fit
by both the lognormal and Gamma distributions (see Table S12).

2.5. Calculating disability-adjusted life years

The distribution of observed individual mean daily consumption/
exposure was combined with dose-response models to estimate the size
of a given health effect associated with fish, red meat and processed
meat consumption in the various scenarios. We quantified the disease
burden of each health effect in terms of DALYs (YLD + YLL). YLD for
health outcome d, sex s, and age a was defined as:

= ⋅ ⋅YLD AC D DWd s a d s a d d, , , ,

where ACd,s,a is the annual number of cases with health outcome d for
sex s and age a, Dd is the duration of health outcome d until remission or
death, and DWd is the disability weight for health outcome d. The
disability weight is a measure of good health, ranging from zero (full
health) to one (death) (see Table S13) (Devleesschauwer et al., 2014a).
YLL for health outcome d, sex s, and age a was defined as:

= ⋅YLL AD SEYLLd s a d s a s a, , , , ,

where ADd,s,a is the annual number of deaths due to health outcome d
for sex s and age a and SEYLLs,a is the standard expected years of life
lost for sex s and age a (WHO, 2017). Finally the disease burden for
health outcome d was summed over sex and age:

∑ ∑= +DALY YLD YLL( )d
s a

d s a d s a, , , ,

The contributions to the DALY estimates for the various health ef-
fects considered in this RBA are listed in Table 1. We applied either a
“top-down” or “bottom-up” approach to estimate incidence (ACd,s,a)
and mortality (ADd,s,a) of a disease, depending on the data available to
describe an association or causation between consumption of a food or
exposure to a compound and the disease (Gibb et al., 2015). When risk
estimates (e.g. relative risk [RR]) from epidemiological or human in-
tervention studies were available, we applied a “top-down” approach,
starting from the current incidence or mortality in the population,
which was combined with RR dose-response functions and exposure
distributions to estimate incidence or mortality due to fish or meat
consumption (fatal CHD and DHA plus EPA exposure, CRC and red and
processed meat consumption, and non-cardia stomach cancer and
processed meat consumption). We applied a “bottom-up” approach,
using dose-response functions combined with exposure distributions
when risk estimates were not available from epidemiological studies
(i.e., maternal fish consumption/MeHg exposure and fetal neurodeve-
lopment) and when data from experimental animal studies were ap-
plied (i.e., exposure to dioxins and dl-PCBs and hypothyroidism and
male infertility). A more detailed description of the methods to calcu-
late DALYs is given in the Supplemental Material (see Supplemental
Material A) along with model input parameters (see Table S12), and
disability weights (see Table S13).

The health impact of the change in food consumption and com-
pound exposure in each alternative scenario was expressed as the DALY
difference for outcome d (ΔDALYd,alt) between the alternative scenario
and the reference scenario (current consumption):
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= −ΔDALY DALY DALYd alt d alt d ref, , ,

A ΔDALY > 0 implies a health loss of the intervention, whereas a
ΔDALY < 0 implies a health gain. Likewise, the overall health impact
of the substitution was expressed as the difference between the sum of
DALYs over the diseases associated with the food consumption in the
alternative scenario and the sum of DALYs over the diseases associated
with the food consumption in the reference scenario:

∑= −ΔDALY DALY DALY( )alt
d

d alt d ref, ,

We applied two-dimensional Monte Carlo simulation using the mc2d
package (Pouillot and Delignette-Muller, 2010) in R version 3.4.1 (R
Core Team, 2017) for the DALY calculations, with 100,000 iterations
for simulating variability and 1000 iterations for uncertainty. The re-
sults of the simulations were reported as the mean of the variability
dimension and the median of the uncertainty dimension along with the
95% uncertainty interval around the mean.

2.6. Statistical analysis

Two-tailed pseudo p-values were calculated for the DALY differ-
ences between each alternative scenario and the reference scenario to
test whether the change was significantly different from zero:

− = ⋅ > <p value Pr ΔDALY Pr ΔDALY2 min( ( 0), ( 0))alt alt

Where probabilities (Pr) were estimated as the proportion of the
DALY difference simulations above or below zero, respectively. We
applied a 5% significance level. The statistical analyses were performed
using R version 3.4.1 (R Core Team, 2017).

3. Results

3.1. Substitution of meat with fish

The current mean and median daily consumption of fish were
31.5 g/day and 23.2g/day, respectively, with more than 78% of the
study population not reaching the recommended level of 350 g of fish/
week (i.e. 50g/day); 14% of the study population had no fish con-
sumption (Table 2). In addition, the consumption of red and processed
meat was on average above the recommended maximum intake of
500 g/week (i.e. approximately 70 g/day), with a mean daily intake of
115.2 g/day; 73% of the study population was above the recommended
maximum consumption. Because some individuals already consumed
more than 50 g of fish/day before substitution (22%), the population
mean consumption was slightly higher than the recommended
minimum (56.5 g/day) after substitution. After the substitution, the
consumption of total red and processed meat was on average decreased
by 17 g/day, with a larger decrease for red meat (14.1 g decrease/day)
compared to processed meat (2.8 g decrease/day). In contrast to the
FBDG for fish, on average the recommended maximum consumption of
500 g of total red and processed meat/week was not met after the
substitution (mean weekly consumption: ∼690 g/week) with 59% of
the study population above the recommended maximum 500 g of total
red and processed meat/week.

3.2. Exposure assessment

The four alternative substitution scenarios were compared to the
current consumption in the Danish adult diet. The ratio of lean to fatty
fish varied between scenarios. The fraction of fatty and lean fish con-
sumed in the alternative scenario 1 was based on the current pre-
ferences. The resulting percentage of fatty fish in the alternative sce-
nario 1 was 53% and 44% for fish consumed in cold meals and hot
meals, respectively, based on the current preferences (see Table S8).
This amounts to approximately 168 g of fatty fish per week, thus just

below half of the total fish consumption. Fatty fish constituted 100% in
the alternative scenario 2, and lean fish 100% in the alternative sce-
narios 3 and 4.

Table 3 shows the exposures to DHA and EPA, MeHg, and dioxin
and dl-PCBs in the reference scenario and the four alternative scenarios.
Table 3 shows that the study population was on average above the AI of
250mg DHA and EPA/day set by FAO and the EFSA NDA panel (EFSA
NDA Panel, 2010; FAO, 2010) before the substitution although half of
the population (52%) did not meet the AI. In contrast, the re-
commendation was reached for the whole population in the alternative
scenario 1 and 2, whereas the intake of DHA and EPA was decreased
compared to the reference scenario in scenario 3 and 4 (84% and 95%
below 250mg DHA and EPA/day, respectively). The reason for this
decrease can be the fact that the individual consumption of fish species
before substitution was also changed in the alternative scenarios, thus
all fatty fish consumed in the reference scenario was replaced by lean
fish in the alternative scenarios 3 and 4. The TWI for MeHg (1.3 μg/
kg bw/week) was not exceeded in 99% of the study population in the
reference or alternative scenarios except for scenario 4 where 98%
exceeded the TWI. For dioxin and dl-PCB exposure, we estimated an
increase in the mean exposure in the alternative scenarios 1 and 2,
whereas only the fraction of individuals exceeding the TWI for dioxin
and dl-PCBs (14 pg TEQ/kg bw/week) was increased in the alternative
scenario 2 (from 2% to 5%). However, the TWI was not exceeded in
99% of the study population in the alternative scenarios 1, 3, and 4
(Table 3).

3.3. Disability-adjusted life years

Fig. 1 shows the health impact of the substitution in terms of the
total DALY difference for each alternative scenario compared to the
reference scenario. An overall health gain was observed in the alter-
native scenarios 1, 2, and 3, whereas a health loss was observed for the
alternative scenario 4 (Fig. 1). The overall DALY difference on the level
of the whole population was −6986 DALYs (−8779, −5177) for the
alternative scenario 1, -7203 DALYs (−9054, 5422) for the alternative
scenario 2, -3741 DALYs (−4834, −2783) for the alternative scenario
3, and 8608 DALYs (3569, 15336) for the alternative scenario 4 per
year compared to the reference scenario. The DALY difference estimates
were significantly different from zero in all alternative scenarios
(pseudo P-values < 0.001). In other words, approximately 7000
healthy life years could be gained each year in Denmark if the whole
adult population substituted some of the red and processed meat in the
diet with fish to reach the recommended intake of 350 g of fish/week (a
mix of fatty and lean, or only fatty fish). In contrast, a smaller health
gain was estimated when consuming only lean fish in the recommended
amounts and an overall health loss was estimated when consuming only
tuna.

The health impact of the substitution in terms of the DALY

Table 2
Consumption amounts of fish, total (red and processed) meat, red meat, and
processed meat (g/day) in Danish adults before and after the substitution.
Abbreviations: P10: 10th percentile; P50: 50th percentile (median); P90: 90th

percentile; SD: standard deviation.

Scenario and food Mean SD P10 P50 P90

Reference scenario
Fish 31.5 32.1 0.0 23.2 73.4
Total red and processed meat 115.2 67.6 44.6 101.1 202.6
Red meat 76.1 46.2 26.7 68.1 134.5
Processed meat 39.0 38.6 4.3 28.3 86.4
Alternative scenario
Fish 56.5 18.9 50.0 50.0 73.4
Total red and processed meat 98.2 67.4 26.5 85.0 185.6
Red meat 62.0 46.3 9.5 53.7 121.5
Processed meat 36.2 38.4 0.4 24.9 83.1
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difference per 100,000 Danish adults (≥15 years) and number of cases
of disease are shown for each of the health effects in each scenario in
Table 4 and Table 5, respectively. The largest beneficial health impact
of the substitution was observed for enhanced neurodevelopment due
to maternal fish consumption (alternative scenarios 1–4) and decreased
risk of fatal coronary heart disease (CHD) due to an increased intake of
DHA and EPA in the alternative scenarios 1–2. The largest adverse
health impact of the substitution was observed for scenario 4 due to

Table 3
Daily exposures to DHA and EPA, MeHg, and dioxin and dl-PCBs in the Danish
adult population in the reference scenario and the four alternative scenarios.
Abbreviations: Bw: body weight; DHA: docosahexaenoic acid; dl-PCB: dioxin-
like polychlorinated biphenyl; EPA: eicosapentaenoic acid; P10: 10th percen-
tile; P50: 50th percentile (median); P90: 90th percentile; SD: standard deviation;
TEQ: toxic equivalents.

Compound and scenario Mean SD P10 P50 P90

DHA and EPA (mg/day)a

Reference scenario 408.99 508.40 0.00 226.43 1056.26
Scenario 1 722.57 248.44 632.80 632.80 947.93
Scenario 2 1228.79 415.22 1082.10 1082.10 1609.76
Scenario 3 244.24 81.17 215.81 216.72 315.56
Scenario 4 152.26 50.88 134.69 134.69 197.61
MeHg (μg/kg bw/day)b
Reference scenario 0.029 0.044 0.00 0.017 0.063
Scenario 1 0.050 0.017 0.035 0.048 0.063
Scenario 2 0.053 0.010 0.025 0.033 0.042
Scenario 3 0.068 0.025 0.047 0.064 0.086
Scenario 4 0.36 0.088 0.22 0.30 0.37
Dioxin and dl-PCBs (pg TEQ/kg bw/day)c

Reference scenario 0.73 0.49 0.31 0.61 1.31
Scenario 1 0.94 0.29 0.66 0.89 1.28
Scenario 2 1.29 0.40 0.92 1.21 1.73
Scenario 3 0.61 0.20 0.39 0.58 0.85
Scenario 4 0.72 0.22 0.49 0.68 1.00

a The recommended intake of DHA and EPA is 250mg/day (300mg/day for
pregnant/lactating women) (EFSA NDA Panel, 2010; FAO, 2010).

b The tolerable daily intake for MeHg is 0.19 μg/kg bw/day (EFSA CONTAM
Panel, 2012).

c The tolerable daily intake for dioxin and dl-PCBs is 2 pg TEQ/kg bw/day
(Scientific Committee on Food, 2001).

Fig. 1. Difference in Disability-Adjusted Life Years (DALYs) by scenario.
DALY difference between the current consumption and the four alternative
scenarios for the total Danish adult population ( ≥ 15 years; 4.7 million in-
dividuals). The bars represent the DALY differences between each of the four
alternative scenarios and the current consumption as a measure of the health
impact of the substitution. Error bars indicate 95% uncertainty intervals.
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increased risk of compromised neurodevelopment associated with in-
creased maternal MeHg exposure and increased risk of fatal CHD due to
a decreased intake of DHA and EPA.

The relative contribution of the individual health effects to the
overall DALY difference estimate is visually presented in Fig. 2.

4. Discussion

In this study we estimated the risk-benefit balance of substituting
red and processed meat with fish in a Danish adult diet and investigated
the health impact of consuming different types of fish (mix, lean, fatty
and predatory) to fulfill the intake recommended by the Danish FBDG.
To our knowledge, this is the first RBA that quantifies the health impact
of substitution of foods in terms of DALYs. We found that on a popu-
lation level up to 7000 healthy years of life could be gained if all Danish
adults increased their fish consumption to 350 g/week and corre-
spondingly lowered the consumption of red and processed meat. Our
results show that consumption of a mix of the average preferred fish
species in Denmark or consumption of only fatty fish would be asso-
ciated with the highest benefit in these amounts. In contrast, consuming
only lean fish would be associated with a smaller health gain, and an
overall health loss was estimated when consuming 350 g of tuna/week.
By quantifying the health impact of adherence to dietary guidelines, our
study provides evidence for national public health policy making.

Our results show that women in the fertile age are a particularly
sensitive subgroup in the population when considering the health ef-
fects associated with fish consumption. Three out of eight health effects
included in the RBA specifically concern this subgroup. Particularly the
effects on fetal neurodevelopment (MeHg and whole fish consumption)
contribute to the overall DALY difference in the various substitution
scenarios compared to the reference scenario. The adverse effects on
male fertility due to changes in prenatal dioxin and dl-PCB exposure
resulting from the substitution appear to be insignificant and almost
negligible. Maternal hypothyroidism has been associated with adverse
effects on fetal neurodevelopment (Boas et al., 2006; Haddow et al.,
1999; US EPA, 2012), which we did not account for in our model due to
the lack of a clear dose-response relationship. Despite an increase in the
mean exposure to dioxin and dl-PCBs in the alternative scenarios 1–2,
our model estimated no extra cases of hypothyroidism in these sce-
narios, thus no increased dioxin-induced negative impact on neurode-
velopment after substitution was anticipated.

The overall health impact of the substitutions we investigated was
mainly attributed to the increased fish consumption and the change in
fish species consumed, whereas the decrease in consumption of red and
processed meat appeared to only explain a minor part of the total DALY
difference (Table 4 and Fig. 2). As the guideline on limiting red and
processed meat consumption to below 500 g/week was not met in more
than half of the study population after substitution, this is not sur-
prising. Likewise, a larger part of the health impact of the decrease in
meat consumption was attributed to the decrease in red meat when
compared to the decrease in processed meat consumption. Although
processed meat is associated with increased risk of both non-cardia
stomach cancer and CRC, and red meat is only associated with in-
creased risk of CRC (and with a lower RR than processed meat (WCRF/
AICR, 2011)), the larger decrease in consumption of red meat (mean
change: 14.1 g/day) when compared to the decrease in consumption of
processed meat (mean change: 2.8 g/day) showed a larger effect on the
overall health impact of the substitution. Meanwhile, as mentioned in
section 2.1. both fish and meat are important contributors to the intake
of various micronutrients in the Danish diet. Thus, although only ad-
verse health effects were included for consumption of red and processed
meat in this study, we emphasize that this food group is also an im-
portant source of vitamins and minerals (Pedersen et al., 2015). How-
ever, another study investigated the impact on macro- and micro-
nutrient intake when decreasing the consumption of red and processed
meat and substituting with other foods, including fish, in the NordicTa
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diet, and showed no marked changes in intake (Tetens et al., 2013b). It
was noted that vitamin D and iron intakes were already below the re-
commendations in the Nordic countries, and did not change con-
siderably due to the decrease in red and processed meat consumption.

The differences in the health impact between the four alternative
scenarios are explained mainly by the ratio of fatty to lean fish. Fatty
fish constituted approximately 50% of all fish consumed in the alter-
native scenario 1, 100% in the alternative scenario 2, and 0% in the
alternative scenarios 3 and 4. The scenarios that considered a higher
consumption of fatty fish led to a higher intake of the fatty acids, DHA
and EPA, which are associated with a decreased risk of fatal CHD
(Mozaffarian and Rimm, 2006). In addition, these scenarios also led to a
lower exposure to MeHg (Table 3). This may be explained by the lower
MeHg concentrations in the most frequently consumed fatty fish in
Denmark compared to the most frequently consumed lean fish (see
Table S5 and Table S8). Despite a higher consumption of fish in the
alternative scenarios 3 and 4, the mean intake of DHA and EPA de-
creased compared to the current consumption due to the lower con-
centration of these fatty acids in lean fish. Thus, the overall health loss
observed in the alternative scenario 4 cannot be attributed only to the
higher exposure to MeHg (mean exposure: 0.36 μg/kg bw/day com-
pared to 0.029 μg/kg bw/day in the reference scenario) and the asso-
ciated adverse effects on fetal neurodevelopment but also particularly
to a decreased intake of DHA and EPA in this scenario (mean intake:
152.26mg/day compared to 408.99mg/day in the reference scenario),
leading to a higher incidence of fatal CHD. We note that the con-
centration data for DHA and EPA in tuna that we applied for the ex-
posure modeling were only based on canned tuna (Table S2).

The studies behind the dose-response relationships used for mod-
eling the beneficial effects of fish consumption described upper limits of
fish consumption above which no further benefit was observed (FAO/
WHO, 2011; Hibbeln et al., 2007; Mozaffarian and Rimm, 2006). Both
limits (30.5 g of fish/day for beneficial neurodevelopmental effects and
250mg DHA and EPA/day for fatal CHD prevention) correspond to
approximately 200 g of fish/week, in the latter case exclusively fatty
fish (Dietary Guidelines Advisory Committee, 2010). According to the
Danish FBDG, around 200 g of the recommended 350 g of fish/week
should be fatty (Tetens et al., 2013a). Our study was inconclusive in
determining the increased benefit of consuming 350 g of fish/week
relative to only 200 g of fatty fish/week. Such increase in benefit was
expected to be primarily related to the increase in micronutrient intake
(e.g. vitamin D) and a decreased consumption of red and processed
meat. We did not quantify the effects of changes in micronutrient intake
due to the substitutions, which could however have helped clarifying
the size of the increased benefit.

To our knowledge, no quantitative RBAs of red and processed meat
consumption have been conducted. The burden of disease of high
consumption of red and processed meat has been estimated by the
Global Burden of Disease Study (GBD, 2016 Risk Factor Collaborators,
2017; Lim et al., 2012) and was also recently addressed in a national
Norwegian burden of disease study (Sælensminde et al., 2016). Both
studies quantified the health loss due to the current consumption of red
and processed meat compared to a theoretical minimum risk exposure
level (14.3 g of red meat/day and 7.2 g of processed meat/day). Nor-
wegian high red meat consumption only constituted a small fraction of
the total burden of dietary risk factors (approximately 84 DALYs/
100,000 per year) however, processed meat was estimated to be the
fourth leading cause of diet-associated disease in Norway, causing ap-
proximately 400 DALYs/100,000 per year (Sælensminde et al., 2016).
Other health effects than CRC were included in the study (ischemic
heart disease, diabetes mellitus, and CRC, and not non-cardia stomach
cancer for processed meat) and the burden of CRC due to consumption
of red and processed meat only constituted approximately 40 DALYs/
100,000 per year and 46 DALYs/100,000 per year, respectively.
Meanwhile, differences in e.g. definition of consumption scenarios,
disease model, incidence, and mortality make it difficult to make a valid

comparison between these results and ours. Had we included the same
health effects as in the above mentioned studies, we may have had
estimated a larger impact of the substitution of red and processed meat.
However, we did not find the evidence strong enough for inclusion in
our study.

The risks and benefits associated with fish consumption have been
extensively studied over the past decade (Becker et al., 2007; Berjia
et al., 2012; Cohen et al., 2005; Domingo, 2016; EFSA Scientific
Committee, 2015; FAO/WHO, 2011; FDA, 2014; Gao et al., 2015;
Hellberg et al., 2012; Hoekstra et al., 2013; Hsi et al., 2016; Jacobs
et al., 2017; Persson et al., 2018; Sirot et al., 2012; van der Voet et al.,
2007; VKM, 2014; Zeilmaker et al., 2013). All RBAs of fish have
reached conclusions coherent with the outcome of our RBA, estimating
that nutritional benefits generally outweighed the toxicological risks of
fish consumption in the general population at moderate intakes and
when exposures to contaminants were low. Hoekstra et al. reached si-
milar overall results when investigating the impact of increasing the
Dutch fish consumption to 200 g and 500 g/week (Hoekstra et al.,
2013). Hoekstra and colleagues also accounted for variability in the
final DALY difference and found that, on average, (young) Dutch
women experience a smaller benefit of the increase in fish consumption
compared to Dutch men, primarily due to health loss of unborn chil-
dren. Van der Voet et al. also accounted for variability in an RBA of
substituting a fraction of Dutch red meat consumption with fish by
estimating individual probabilities of being below the Dutch AI of DHA
and EPA (0.45 g/day) and above the tolerable daily intake for dioxin
(2 pg/kg bw/day) (van der Voet et al., 2007). By simultaneously mod-
eling the probabilities of transgressing these limits, they found a sub-
stitution of 25% of red meat with either salmon or a mix of fatty fish to
be the most optimal scenario.

In an RBA of fish, Zeilmaker et al. found great variation in the risk-
benefit balance among 33 fish species. This study focused on neuro-
developmental effects in unborn children attributed to maternal fish
consumption and found an overall adverse effect of maternal fish
consumption for the majority of the fish species considered (Zeilmaker
et al., 2013). Zeilmaker and colleagues based their dose-response model
describing beneficial neurodevelopmental effects of fish consumption
on the maternal intake of DHA. However, according to the EFSA NDA
panel, the beneficial neurodevelopmental effects of fish consumption
during pregnancy cannot be solely attributed to this fatty acid (EFSA
NDA Panel, 2014). By basing our model on maternal fish consumption,
we also covered the beneficial neurodevelopmental effects of other
nutrients in fish such as iodine (EFSA NDA Panel, 2014). This may
explain why the adverse effects of MeHg on neurodevelopment out-
weighed the beneficial effects of maternal fish consumption in the RBA
by Zeilmaker et al., but not in our study, except when consuming large
predatory fish species in high quantities. Furthermore, the beneficial
effect of fish consumption on neurodevelopment observed in our RBA is
likely an underestimate of the true beneficial effect, as the dose-re-
sponse relation we applied was not adjusted for maternal MeHg ex-
posure (exposure assumed equal to the mean exposure in the British
population of 0.05 μg/kw/day) (FDA, 2014; Hibbeln et al., 2007).
However, results from an American observational cohort showed that
increased maternal fish intake was associated with a higher beneficial
effect in the child when adjusting for maternal MeHg exposure (Oken
et al., 2008b). The same study showed that the association between
MeHg exposure and adverse neurodevelopmental effects were
strengthened when adjusting for maternal fish intake. To be able to
investigate potential limitations of increasing consumption of various
types of fish with varying MeHg concentrations with a certain safety
margin, we chose to apply a conservative approach and model both the
non-MeHg adjusted beneficial effects of fish consumption and the ad-
verse effects of MeHg exposure. Even though we may overestimate the
adverse effects of MeHg, our model supports the findings from other
cohort studies, including a Danish birth cohort that found an overall
beneficial effect of maternal fish consumption on fetal
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neurodevelopment when exposures to MeHg are low (Oken et al., 2005,
2008b; 2008a). However, our study adds insight in terms of the po-
tential consequences of changing preferences towards large predatory
fish species such as tuna. The monitoring data used in this study clearly
showed that the concentration of MeHg in tuna was particularly higher

than other (smaller) predatory fish species consumed in Denmark with
around a 10-fold higher MeHg concentration (Table S5). While tuna
showed a concentration of 0.31 μg MeHg/g fresh weight, fish such as
cod, pollock, mackerel, Greenland halibut, flounder, and eel had con-
centrations in the range 0.052–0.072 μg/g fresh weight. WHO

Table 6
Unquantified sources of uncertainty of the final DALY difference estimates. Abbreviations: bw: body weight; CRC: colorectal cancer; DALY: disability-adjusted life
year; DHA: docosahexaenoic acid; dl-PCB: dioxin-like polychlorinated biphenyl; DW: disability weight; EPA: eicosapentaenoic acid; IQ: intelligence quotient; RBA:
risk-benefit assessment; RR: relative risk.

Source of uncertainty Impact

Health outcome Identification of relevant compounds There may be other compounds with adverse/beneficial effects present in fish and
red and processed meat that have not been accounted for in this RBA.

Identification of relevant health effects There may be other health effects associated with consumption of fish and red and
processed meat which was not included in this RBA.

Identification of relevant subgroups There may be other relevant subgroups in relation to the health effects considered
in this RBA.

Exposure assessment Uncertainty in consumption data Over- or under-estimation of consumption. We did not exclude under- and over-
reporters in the dietary survey. In addition, we did not adjust for within-individual
variability in consumption which may cause overestimation of upper and lower
tails of distributions of consumption amounts.

Uncertainty in concentration data There may be large uncertainty associated with measuring nutrient and
contaminant concentrations in food. In addition, food processing was not
accounted for in our exposure assessment.

Uncertainty in substitution model The established substitution factors are associated with uncertainty which causes
uncertainty in the exposure assessment in the alternative scenarios and around the
final DALY difference estimate.

Choice of model to describe exposure distributions May over- or under-estimate exposures.
Uncertainty in measured bw We applied measured (non self-reported) bw data and uncertainty would therefore

primarily be associated with the scale used in the dietary survey.
Health impact characterization Choice of dose-response modeling of animal data Uncertainty is associated with the fitted dose-response model to describe dioxin

and dl-PCB induced health effects which may lead to uncertainty around the dose
estimated to cause an adverse effect in rats.

Interspecies extrapolation We did not quantify the uncertainty associated with extrapolation factors applied
to convert dioxin and dl-PCB effect doses in animal to humans; however, the
uncertainty may be large.

Intraspecies extrapolation We did not quantify the uncertainty associated with extrapolation factors applied
to account for within species variability in sensitivity to dioxin and dl-PCBs.

Choice of critical effect size for dioxin-induced health
effects

Large uncertainty is associated with establishing a single estimate of a critical
effect size used for dioxin dose-response modelling, leading to additional
uncertainty around the critical effect dose for dioxin-induced health effects. We
most likely overestimated the risks.

Choice of distributions to describe uncertainty around
critical effect dose for dioxin-induced health effects

Uncertainty is associated with the assumptions on the PERT distribution being
suitable to describe the uncertainty around the critical effect dose for dioxin-
induced health effects.

RR estimates based on epidemiological observational
studies

The RR estimates describing the association between food consumption and
disease, derived from observational studies, may already be based on underlying
food substitutions. This causes uncertainty around the overall health impact of the
substitution.

Dose-response models based on epidemiological data Large uncertainty is associated with the assumption on linearity of the RR dose-
response relations applied. Furthermore, upper limits of dose-response relations
(fish and IQ; DHA+ EPA and fatal CHD) are very uncertain as well and likewise it
is uncertain if there may be upper/lower limits for the other RR dose-response
models applied above/below which there is no effect. We most likely
underestimated the benefits associated with the substitution.

DALY estimation Choice of distributions to describe uncertainty around
DWs

Uncertainty is associated with the assumptions on the PERT distribution being
suitable to describe the uncertainty around the DWs.

Choice of onset and duration of disease Large uncertainty associated with the assumptions on onset and duration of
disease which may lead to either over- or under-estimation of the final DALY
estimates. Likewise, we assumed no time-lag from exposure to disease which is
also associated with great uncertainty. In contrast to all other health effects
considered, for the dioxin-induced health effects we applied lifetime probabilities
and not annual probabilities of disease, causing an overestimation of the risks
associated with dioxin exposure.

Overlapping cases of disease/co-morbidity We did not account for the fact that cases of disease may count double in the DALY
estimates, e.g. cases of CRC and non-cardia stomach cancer attributed a high
processed meat consumption which impacts both. However, it unlikely that an
individual will be diagnosed with both cancer types within the same year. We
expect this to cause an over-estimation of the disease incidences causing an over-
estimation of the final DALY estimates for each scenario (reference and alternative
scenarios) which may impact the final DALY difference estimate as well.

Overall evaluation of unquantified
uncertainty

In general, we applied a conservative approach when making assumptions
favoring especially toxicological risks associated with consumption of fish.
However, uncertainties around e.g. unidentified compounds or health effects may
as well cause an underestimation of risks.
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particularly highlighted shark, king mackerel, and swordfish, in addi-
tion to tuna as large predatory fish which may have high concentrations
of MeHg (WHO, 2008). Data on consumption of these fish species were
not given in DANSDA, indicating a low intake in Denmark, and thus
leaving tuna as the main concern for the Danish population.

In line with our findings, a recent risk assessment of MeHg exposure
from fish consumption in five European countries found that frequent
consumption of large predatory fish species, and in particular con-
sumption of tuna, poses a potential risk of exceeding the TWI for MeHg
(Jacobs et al., 2017). The authors recommended substituting large
predatory and lean fish species with small fatty fish to increase benefits
and decrease risks associated with fish consumption, coherent with the
overall message of our RBA. Though others have stressed the risks of
increasing the consumption of fatty fish species due to higher con-
centrations of dioxins and dl-PCBs (Sioen et al., 2008), we did not es-
timate an increased risk of dioxin-associated health effects when con-
suming 350 g of fatty fish/week compared to the current fish
consumption.

Our substitution model was based on deterministic approaches,
assuming that all individuals would substitute in the same manner.
Thus, our model did not take variability in the substitution or in fish
and meat preferences into account apart from individual baseline
consumption. However, the Danish population may be very hetero-
geneous in the behavior concerning food substitution and in addition
may also vary in what foods to substitute. The data, assumptions and
models applied in this RBA all contribute to the uncertainty in the
overall health impact of the substitutions we investigated. We were able
to quantify some but not all of this uncertainty. Table 6 lists the sources
of unquantified uncertainty in our study and explains the potential
impact on the final results. We generally applied a conservative ap-
proach and overestimated especially toxicological risks. Still, the im-
pact and direction of other sources of uncertainties are difficult to
characterize.

5. Conclusions

In conclusion, our findings support the recommendations on in-
creasing consumption of fish while decreasing consumption of red and
processed meat in the Danish population. We considered the health
effects associated with consumption of fish, red and processed meat and
with exposure to contaminants and two fatty acids in these foods. We
found that up to approximately 7000 healthy life-years could be gained
each year in Denmark if all adult individuals increased the consumption
of fish to 350 g/week and at the same time decreased the consumption
of red and processed meat. The largest benefit was estimated when at
least half of the total amount of fish consumed was fatty. Our study also
showed that especially women who plan to become pregnant in the
near future should limit the consumption of large predatory fish species
such as tuna. However, it is important to stress that our findings show
that this subgroup should not limit the consumption of small and fatty
fish species to below 200–350 g/week, as the beneficial effects appear
to outweigh the adverse effects of MeHg and dioxins at these amounts.

Acknowledgements

We thank Tue Christensen for retrieving the consumption data from
DANSDA 2011–2013. This work was funded through the Metrix project
by the Danish Ministry for Environment and Food.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.fct.2018.06.063.

Transparency document

Transparency document related to this article can be found online at
http://dx.doi.org/10.1016/j.fct.2018.06.063.

References

Ahlborg, U.G., Brouwer, A., Fingerhut, M.A., Jacobson, J.L., Jacobson, S.W., Kennedy,
S.W., et al., 1992. Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and
biphenyls on human and environmental health, with special emphasis on application
of the toxic equivalency factor concept. Eur. J. Pharmacol. Environ. Toxicol 228,
179–199. http://dx.doi.org/10.1016/0926-6917(92)90029-C.

Becker, W., Darnerud, P.O., Petersson-Grawé, K., 2007. Risks and Benefits of Fish
Consumption. A Risk-Benefit Analysis Based on the Occurrence of Dioxin/PCB,
Methyl Mercury, n-3 Fatty Acids and Vitamin D in Fish. National Food
Administration Report Series No. 12. .

Berjia, F.L., Hoekstra, J., Andersen, R., Poulsen, M., Nauta, M., 2012. Risk-benefit as-
sessment of cold-smoked salmon: microbial risk versus nutritional benefit. Eur. J.
Food Res. Rev. 2, 49–68.

Bingham, S., Gill, C., Welch, A., Cassidy, A., Khaw, K., Sneyd, M., et al., 1994. Comparison
of dietary assessment methods in nutritional epidemiology: weighed records v. 24 h
recalls, food-frequency questionnaires and estimated-diet records. Br. J. Nutr. 72,
619–643. http://dx.doi.org/10.1079/BJN19940064.

Boas, M., Feldt-Rasmussen, U., Skakkebæk, N.E., Main, K.M., 2006. Environmental che-
micals and thyroid function. Eur. J. Endocrinol. 154, 599–611. http://dx.doi.org/10.
1530/eje.1.02128.

Bouvard, V., Loomis, D., Guyton, K.Z., Grosse, Y., Ghissassi, F.E.L., Benbrahim-Tallaa, L.,
et al., 2015. Carcinogenicity of consumption of red and processed meat. Lancet
Oncol. 16, 1599–1600. http://dx.doi.org/10.1016/S1470-2045(15)00444-1.

Cohen, J.T., Bellinger, D.C., Connor, W.E., Kris-Etherton, P.M., Lawrence, R.S., Savitz,
D.A., et al., 2005. A quantitative risk-benefit analysis of changes in population fish
consumption. Am. J. Prev. Med. 29, 325–334. http://dx.doi.org/10.1016/j.amepre.
2005.07.003.

Devleesschauwer, B., Haagsma, J.A., Angulo, F.J., Bellinger, D.C., Cole, D., Döpfer, D.,
et al., 2015. Methodological framework for World Health Organization estimates of
the global burden of foodborne disease. PLoS One 10, 1–20. http://dx.doi.org/10.
1371/journal.pone.0142498.

Devleesschauwer, B., Havelaar, A.H., Maertens De Noordhout, C., Haagsma, J.A., Praet,
N., Dorny, P., et al., 2014a. Calculating disability-adjusted life years to quantify
burden of disease. Int. J. Publ. Health 59, 565–569. http://dx.doi.org/10.1007/
s00038-014-0552-z.

Devleesschauwer, B., Maertens De Noordhout, C., Smit, S.A., Duchateau, L., Dorny, P.,
Stein, C., et al., 2014b. Quantifying burden of disease to support public health policy
in Belgium: opportunities and constraints. BMC Publ. Health 14, 1–8. http://dx.doi.
org/10.1186/1471-2458-14-1196.

Dietary Guidelines Advisory Committee, 2010. Report of the dietary guidelines advisory
committee on the dietary guidelines for americans, 2010, to the secretary of agri-
culture and the secretary of health and human services. U.S. Department of agri-
culture. Agricultural Research Service 1–445. Available: http://www.ncbi.nlm.nih.
gov/pubmed/8677055, Accessed date: 18 January 2018.

Domingo, J.L., 2016. Nutrients and chemical pollutants in fish and shellfish. Balancing
health benefits and risks of regular fish consumption. Crit. Rev. Food Sci. Nutr. 56,
979–988. http://dx.doi.org/10.1080/10408398.2012.742985.

Domingo, J.L., Nadal, M., 2017. Carcinogenicity of consumption of red meat and pro-
cessed meat: a review of scientific news since the IARC decision. Food Chem. Toxicol.
105, 256–261. http://dx.doi.org/10.1016/j.fct.2017.04.028.

DTU, 2017. Fooddata R2, National Food Institute. Technical University of Denmark
Available: http://frida.fooddata.dk/, Accessed date: 25 January 2017.

EFSA CONTAM Panel, 2012. EFSA Panel on Contaminants in the Food Chain (CONTAM);
Scientific Opinion on the risk for public health related to the presence of mercury and
methylmercury in food. EFSA J 10 (12), 2985. http://dx.doi.org/10.2903/j.efsa.
2012.2985. 241 pp.

EFSA NDA Panel, 2010. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA);
Scientific Opinion on Dietary Reference Values for fats, including saturated fatty
acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and
cholesterol. EFSA J 8 (3), 1461. http://dx.doi.org/10.2903/j.efsa.2010.1461. 107 pp.

EFSA NDA Panel, 2014. Scientific Opinion on health benefits of seafood (fish and shell-
fish) consumption in relation to health risks associated with exposure to methyl-
mercury. EFSA J 12 (7), 3761. http://dx.doi.org/10.2903/j.efsa.2014.3761. 80 pp.

EFSA Scientific Committee, 2015. Statement on the benefits of fish/seafood consumption
compared to the risks of methylmercury in fish/seafood. EFSA J 13 (1), 3982. http://
dx.doi.org/10.2903/j.efsa.2015.3982. 36 pp.

FAO/WHO, 2011. Report of the Joint FAO/WHO Expert Consultation on the Risks and
Benefits of Fish Consumption. Rome 2010, Food and Agriculture Organization of the
United Nations. World Health Organization Available: http://www.fao.org/docrep/
014/ba0136e/ba0136e00.pdf, Accessed date: 18 January 2018.

FAO, 2010. Fats and fatty acids in human nutrition - report of an expert consultation.
Geneva 2008. FAO Food Nutr. Pap. 91, 1–166. doi:978-92-5-106733-8. Available:
http://www.ncbi.nlm.nih.gov/pubmed/21812367, Accessed date: 18 January 2018.

FDA, 2014. A Quantitative Assessment of the Net Effects on Fetal Neurodevelopment from
Eating Commercial Fish (As Measured by IQ and Also by Early Age Verbal
Development in Children). May 2014. U.S. Food and Drug Administration Available:
https://www.fda.gov/downloads/food/foodborneillnesscontaminants/metals/
ucm396785.pdf, Accessed date: 18 January 2018.

S.T. Thomsen et al. Food and Chemical Toxicology 120 (2018) 50–63

61

http://dx.doi.org/10.1016/j.fct.2018.06.063
http://dx.doi.org/10.1016/j.fct.2018.06.063
http://dx.doi.org/10.1016/j.fct.2018.06.063
http://dx.doi.org/10.1016/0926-6917(92)90029-C
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref2
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref2
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref2
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref2
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref3
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref3
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref3
http://dx.doi.org/10.1079/BJN19940064
http://dx.doi.org/10.1530/eje.1.02128
http://dx.doi.org/10.1530/eje.1.02128
http://dx.doi.org/10.1016/S1470-2045(15)00444-1
http://dx.doi.org/10.1016/j.amepre.2005.07.003
http://dx.doi.org/10.1016/j.amepre.2005.07.003
http://dx.doi.org/10.1371/journal.pone.0142498
http://dx.doi.org/10.1371/journal.pone.0142498
http://dx.doi.org/10.1007/s00038-014-0552-z
http://dx.doi.org/10.1007/s00038-014-0552-z
http://dx.doi.org/10.1186/1471-2458-14-1196
http://dx.doi.org/10.1186/1471-2458-14-1196
http://www.ncbi.nlm.nih.gov/pubmed/8677055
http://www.ncbi.nlm.nih.gov/pubmed/8677055
http://dx.doi.org/10.1080/10408398.2012.742985
http://dx.doi.org/10.1016/j.fct.2017.04.028
http://frida.fooddata.dk/
http://dx.doi.org/10.2903/j.efsa.2012.2985
http://dx.doi.org/10.2903/j.efsa.2012.2985
http://dx.doi.org/10.2903/j.efsa.2010.1461
http://dx.doi.org/10.2903/j.efsa.2014.3761
http://dx.doi.org/10.2903/j.efsa.2015.3982
http://dx.doi.org/10.2903/j.efsa.2015.3982
http://www.fao.org/docrep/014/ba0136e/ba0136e00.pdf
http://www.fao.org/docrep/014/ba0136e/ba0136e00.pdf
http://www.ncbi.nlm.nih.gov/pubmed/21812367
https://www.fda.gov/downloads/food/foodborneillnesscontaminants/metals/ucm396785.pdf
https://www.fda.gov/downloads/food/foodborneillnesscontaminants/metals/ucm396785.pdf


Gao, Y.X., Zhang, H.X., Li, J.G., Zhang, L., Yu, X.W., He, J.L., et al., 2015. The benefit risk
assessment of consumption of marine species based on benefit-risk analysis for foods
(BRAFO)-tiered approach. Biomed. Environ. Sci. 28, 243–252. http://dx.doi.org/10.
3967/bes2015.035.

GBD 2016 Risk Factor Collaborators, 2017. Global, regional, and national comparative
risk assessment of 84 behavioural, environmental and occupational, and metabolic
risks or clusters of risks, 1990-2016: a systematic analysis for the Global Burden of
Disease Study 2016. Lancet 390, 1345–1422. http://dx.doi.org/10.1016/S0140-
6736(17)32366-8.

Gibb, H., Devleesschauwer, B., Bolger, P.M., Wu, F., Ezendam, J., Cliff, J., et al., 2010.
World Health Organization estimates of the global and regional disease burden of
four foodborne chemical toxins: a data synthesis. F1000Research 4 (2015), 1–12.
http://dx.doi.org/10.12688/f1000research.7340.1.

Haddow, J.E., Palomaki, G.E., Allan, W.C., Williams, J.R., Knight, G.J., Gagnon, J., et al.,
1999. Maternal thyroid deficiency during pregnancy and subsequent neuropsycho-
logical development of the child. N. Engl. J. Med 341, 549–555.

Hay, S.I., Abajobir, A.A., Abate, K.H., Abbafati, C., Abbas, K.M., Abd-Allah, F., et al.,
2017. Global, regional, and national disability-adjusted life-years (DALYs) for 333
diseases and injuries and healthy life expectancy (HALE) for 195 countries and ter-
ritories, 1990–2016: a systematic analysis for the Global Burden of Disease Study
2016. Lancet 390, 1260–1344. http://dx.doi.org/10.1016/S0140-6736(17)32130-X.

Hellberg, R.S., Dewitt, C.A.M., Morrissey, M.T., 2012. Risk-benefit analysis of seafood
consumption: a review. Compr. Rev. Food Sci. Food Saf. 11, 490–517. http://dx.doi.
org/10.1111/j.1541-4337.2012.00200.x.

Hibbeln, J.R., Davis, J.M., Steer, C., Emmett, P., Rogers, I., Williams, C., et al., 2007.
Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in
childhood (ALSPAC study): an observational cohort study. Lancet 369, 578–585.
http://dx.doi.org/10.1016/S0140-6736(07)60277-3.

Hoekstra, J., Hart, A., Owen, H., Zeilmaker, M., Bokkers, B., Thorgilsson, B., et al., 2013.
Fish, contaminants and human health: quantifying and weighing benefits and risks.
Food Chem. Toxicol. 54, 18–29. http://dx.doi.org/10.1016/j.fct.2012.01.013.

Hsi, H.C., Hsu, Y.W., Chang, T.C., Chien, L.C., 2016. Methylmercury concentration in fish
and risk-benefit assessment of fish intake among pregnant versus infertile women in
Taiwan. PLoS One 11, 1–14. http://dx.doi.org/10.1371/journal.pone.0155704.

IARC, 2015. IARC Monographs evaluate consumption of red meat and processed meat.
Available: https://www.iarc.fr/en/media-centre/pr/2015/pdfs/pr240_E.pdf,
Accessed date: 10 April 2017.

IARC, 1997. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans.
IARC Monogr. Eval. Carcinog. Risks Hum. 69, 1–666.

Jacobs, S., Sioen, I., Jacxsens, L., Domingo, J.L., Sloth, J.J., Marques, A., et al., 2017. Risk
assessment of methylmercury in five European countries considering the national
seafood consumption patterns. Food Chem. Toxicol. 104, 26–34. http://dx.doi.org/
10.1016/j.fct.2016.10.026.

JECFA, 2002. Evaluation of certain food additives and contaminants - fifty-seventh report
of the Joint FAO/WHO Expert Committee on Food Additives. Geneva 2002. World
Health Organization technical report series 909, 1–186.

Knudsen, V.K., Gille, M.-B., Nielsen, T.H., Christensen, T., Fagt, S., Biltoft-Jensen, A.,
2011. Relative validity of the pre-coded food diary used in the Danish national survey
of diet and physical activity. Publ. Health Nutr. 14, 2110–2116. http://dx.doi.org/10.
1017/S1368980011001650.

Larsen, E.H., Andersen, N.L., Moller, A., Petersen, A., Mortensen, G.K., Petersen, J., 2002.
Monitoring the content and intake of trace elements from food in Denmark. Food
Addit. Contam 19, 33–46. http://dx.doi.org/10.1080/02652030110087447.

Larsen, J.C., Nørhede, P., 2013. Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzo-
furans (PCDFs) and biphenyls (PCBs). Evaluation of health hazards and estimation of
a quality criterion in soil. Danish Environmental Protection Agency, Copenhagen, pp.
1–50.

Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., et al., 2012. A
comparative risk assessment of burden of disease and injury attributable to 67 risk
factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the
Global Burden of Disease Study 2010. Lancet 380, 2224–2260. http://dx.doi.org/10.
1016/S0140-6736(12)61766-8.

Mozaffarian, D., Rimm, E.B., 2006. Fish intake, contaminants, and human health: eval-
uating the risks and the benefits. Jama 296, 1885–1900. http://dx.doi.org/10.1001/
jama.296.15.1885.

Norat, T., Chan, D., Lau, R., Aune, D., Vieira, R., 2010. WCRF/AICR systematic literature
review continuous update project report - the associations between food, nutrition
and physical activity and the risk of colorectal cancer. Continuous update project.
Available: http://www.wcrf.org/sites/default/files/SLR_colorectal_cancer_2010.pdf,
Accessed date: 1 August 2017.

Norat, T., Vierira, A.R., Chan, D., Aune, D., Abar, L., Navarro, D., et al., 2015. World
cancer research fund international systematic literature review - the associations
between food, nutrition and physical activity and the risk of stomach cancer.
Continuous update project. Available: http://www.wcrf.org/sites/default/files/
Stomach-Cancer-SLR-2015.pdf, Accessed date: 1 August 2017.

Nordic Council of Ministers, 2014. Nordic Nutrition Recommendations 2012-Integrating
Nutrition and Physical Activity, fifth ed. Norden, Copenhagen, Denmark.

Oken, E., Østerdal, M.L., Gillman, M.W., Knudsen, V.K., Halldorsson, T.I., Strøm, M.,
et al., 2008a. Associations of maternal fish intake during pregnancy and breast-
feeding duration with attainment of developmental milestones in early childhood: a
study from the Danish National Birth Cohort. Am. J. Clin. Nutr. 88, 789–796 doi:88/
3/789 [pii].

Oken, E., Radesky, J.S., Wright, R.O., Bellinger, D.C., Chitra, J., Kleinman, K.P., et al.,
2008b. Maternal fish intake during pregnancy, blood mercury, and child cognition at
age 3 years in a US cohort. Am. J. Epidemiol. 167, 1171–1181. http://dx.doi.org/10.
1093/aje/kwn034.

Oken, E., Wright, R.O., Kleinman, K.P., Bellinger, D., Amarasiriwardena, C.J., Hu, H.,
et al., 2005. Maternal fish consumption, hair mercury, and infant cognition in a U.S.
cohort. Environ. Health Perspect. 113, 1376–1380. http://dx.doi.org/10.1289/ehp.
8041.

Pedersen, A.N., Christensen, T., Knudsen, J., Matthiessen, V.K., Rosenlund-Sørensen, M.,
Biltoft-Jensen, A., et al., 2015. Danskernes Kostvaner 2011-2013. Hovedresultater
[Dietary Habits in Denmark 2011-2013. Main Results]. National Food Institute.
Technical University of Denmark, Søborg, Denmark, pp. 1–209. Available: http://
www.food.dtu.dk/-/media/Institutter/Foedevareinstituttet/Publikationer/Pub-
2015/Rapport_Danskernes-Kostvaner-2011-2013.ashx?la=da, Accessed date: 1 June
2016.

Persson, M., Fagt, S., Pires, S.M., Poulsen, M., Vieux, F., Nauta, M.J., 2018. Use of
mathematical optimization models to derive healthy and safe fish intake. J. Nutr.
148, 275–284. http://dx.doi.org/10.1093/jn/nxx010.

Petersen, A., Fromberg, A., Andersen, J.H., Sloth, J.J., Granby, K., Duedahl-Olesen, L.,
et al., 2015a. Chemical Contaminants - Food Monitoring 2004-2011, third ed.
National Food Institute, Technical University of Denmark.

Petersen, A., Fromberg, A., Andersen, J.H., Sloth, J.J., Granby, K., Duedahl-Olesen, L.,
et al., 2015b. Chemical Contaminants - Food Monitoring 2012-2013, first ed.
National Food Institute, Technical University of Denmark.http://dx.doi.org/10.
1016/B978-0-12-064477-3.50018-7.

Pouillot, R., Delignette-Muller, M.L., 2010. Evaluating variability and uncertainty sepa-
rately in microbial quantitative risk assessment using two R packages. Int. J. Food
Microbiol. 142, 330–340. http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.011.

R Core Team, 2017. R: a Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria Available: https://www.r-
project.org/.

Rideout, K., Kosatsky, T., 2017. Fish for Dinner? Balancing risks, benefits, and values in
formulating food consumption advice. Risk Anal. 37, 2041–2052. http://dx.doi.org/
10.1111/risa.12769.

Sælensminde, K., Johansson, L., Helleve, A., 2016. Samfunnsgevinster av å følge
Helsedirektoratets kostråd. Available: https://helsedirektoratet.no/Lists/
Publikasjoner/Attachments/1216/Samfunnsgevinster.av å følge.Helsedirektoratets
kostråd.IS-2451.pdf, Accessed date: 10 December 2017.

Scientific Committee on Food, 22 November 2000. Opinion of the Scientific Committee
on Food on the risk assessment of dioxins and dioxin-like PCBs in Food. European
Commission, Brussels, pp. 1–141. Available: https://ec.europa.eu/food/sites/food/
files/safety/docs/cs_contaminants_catalogue_dioxins_out78_en.pdf Accessed 3 May
2016.

Scientific Committee on Food, 30 May 2001. Opinion of the Scientific Committee on Food
on the risk assessment of dioxins and dioxin-like PCBs in Food. Update based on new
scientific information available since the adoption of the SCF opinion of 22nd
November 2000. European Commission, Brussels, pp. 1–29. Available: https://ec.
europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_dioxins_
out90_en.pdf Accessed 3 June 2016.

Sioen, I., De Henauw, S., Verbeke, W., Verdonck, F., Willems, J.L., Van Camp, J., 2008.
Fish consumption is a safe solution to increase the intake of long-chain n-3 fatty acids.
Publ. Health Nutr. 11, 1107–1116. http://dx.doi.org/10.1017/S1368980007001450.

Sirot, V., Leblanc, J.-C., Margaritis, I., 2012. A risk-benefit analysis approach to seafood
intake to determine optimal consumption. Br. J. Nutr. 107, 1812–1822. http://dx.
doi.org/10.1017/S0007114511005010.

Statistics Denmark. Statistikbanken. Available: http://www.statistikbanken.dk/
statbank5a/default.asp?w=1536 Accessed 18 July 2017.

Tetens, I., Andersen, L.B., Astrup, A., Mejborn, U.H., Gondolf Kjeld, H., Marianne, U.J.,
et al., 2013a. Evidensgrundlaget for Danske Råd Om Kost Og Fysisk Aktivitet [The
Evidence-base for the Danish Guidelines for Diet and Physical Activity]. National
Food Institute. Technical University of Denmark, Søborg, Denmark.

Tetens, I., Hoppe, C., Andersen, L.F., Helldán, A., Lemming, E.W., Trolle, E., et al., 2013b.
Nutritional Evaluation of Lowering Consumption of Meat and Meat Products in the
Nordic Context, Norden; Copenhagen, Denmark.

The Danish National eHealth Authority. eSundhed. Available: www.esundhed.dk
Accessed 20 July 2017.

The Scientific Advisory Committee on Nutrition, 2010. Iron and Health. TSO,
London, UK.

US EPA, 2012. EPA’s Reanalysis of Key Issues Related to Dioxin Toxicity and Response to
NAS Comments. U.S. Environmental Protection Agency, Volume 1 (CAS No. 1746-01-
6), Washington, DC. Available: https://cfpub.epa.gov/ncea/iris/iris_documents/
documents/supdocs/dioxinv1sup.pdf Accessed 15 January 2017.

Van den Berg, M., Birnbaum, L.S., Denison, M., De Vito, M., Farland, W., Feeley, M., et al.,
2006. The 2005 World Health Organization reevaluation of human and mammalian
toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 93,
223–241. http://dx.doi.org/10.1093/toxsci/kfl055.

van der Voet, H., de Mul, A., van Klaveren, J., 2007. A probabilistic model for simulta-
neous exposure to multiple compounds from food and its use for risk-benefit as-
sessment. Food Chem. Toxicol. 45, 1496–1506. http://dx.doi.org/10.1016/j.fct.
2007.02.009.

Van Horn, L., McCoin, M., Kris-Etherton, P.M., Burke, F., Carson, J.A.S., Champagne,
C.M., et al., 2008. The evidence for dietary prevention and treatment of cardiovas-
cular disease. J. Am. Diet Assoc. 108, 287–331. http://dx.doi.org/10.1016/j.jada.
2007.10.050.

Van Leeuwen, F.X.R., Feeley, M., Schrenk, D., Larsen, J.C., Farland, W., Younes, M., 2000.
Dioxins: WHO's tolerable daily intake (TDI) revisited. Chemosphere 40, 1095–1101.
http://dx.doi.org/10.1016/S0045-6535(99)00358-6.

VKM, 2014. Benefit-risk assessment of fish and fish products in the Norwegian diet – an
update. Scientific Opinion of the Scientific Steering Committee. VKM Report 15,
Oslo, Norway pp. 1–293. http://dx.doi.org/10.9734/EJNFS/2015/18605. Available:

S.T. Thomsen et al. Food and Chemical Toxicology 120 (2018) 50–63

62

http://dx.doi.org/10.3967/bes2015.035
http://dx.doi.org/10.3967/bes2015.035
http://dx.doi.org/10.1016/S0140-6736(17)32366-8
http://dx.doi.org/10.1016/S0140-6736(17)32366-8
http://dx.doi.org/10.12688/f1000research.7340.1
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref25
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref25
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref25
http://dx.doi.org/10.1016/S0140-6736(17)32130-X
http://dx.doi.org/10.1111/j.1541-4337.2012.00200.x
http://dx.doi.org/10.1111/j.1541-4337.2012.00200.x
http://dx.doi.org/10.1016/S0140-6736(07)60277-3
http://dx.doi.org/10.1016/j.fct.2012.01.013
http://dx.doi.org/10.1371/journal.pone.0155704
https://www.iarc.fr/en/media-centre/pr/2015/pdfs/pr240_E.pdf
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref32
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref32
http://dx.doi.org/10.1016/j.fct.2016.10.026
http://dx.doi.org/10.1016/j.fct.2016.10.026
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref34
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref34
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref34
http://dx.doi.org/10.1017/S1368980011001650
http://dx.doi.org/10.1017/S1368980011001650
http://dx.doi.org/10.1080/02652030110087447
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref37
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref37
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref37
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref37
http://dx.doi.org/10.1016/S0140-6736(12)61766-8
http://dx.doi.org/10.1016/S0140-6736(12)61766-8
http://dx.doi.org/10.1001/jama.296.15.1885
http://dx.doi.org/10.1001/jama.296.15.1885
http://www.wcrf.org/sites/default/files/SLR_colorectal_cancer_2010.pdf
http://www.wcrf.org/sites/default/files/Stomach-Cancer-SLR-2015.pdf
http://www.wcrf.org/sites/default/files/Stomach-Cancer-SLR-2015.pdf
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref42
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref42
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref43
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref43
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref43
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref43
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref43
http://dx.doi.org/10.1093/aje/kwn034
http://dx.doi.org/10.1093/aje/kwn034
http://dx.doi.org/10.1289/ehp.8041
http://dx.doi.org/10.1289/ehp.8041
http://www.food.dtu.dk/-/media/Institutter/Foedevareinstituttet/Publikationer/Pub-2015/Rapport_Danskernes-Kostvaner-2011-2013.ashx?la=da
http://www.food.dtu.dk/-/media/Institutter/Foedevareinstituttet/Publikationer/Pub-2015/Rapport_Danskernes-Kostvaner-2011-2013.ashx?la=da
http://www.food.dtu.dk/-/media/Institutter/Foedevareinstituttet/Publikationer/Pub-2015/Rapport_Danskernes-Kostvaner-2011-2013.ashx?la=da
http://dx.doi.org/10.1093/jn/nxx010
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref48
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref48
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref48
http://dx.doi.org/10.1016/B978-0-12-064477-3.50018-7
http://dx.doi.org/10.1016/B978-0-12-064477-3.50018-7
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.011
https://www.r-project.org/
https://www.r-project.org/
http://dx.doi.org/10.1111/risa.12769
http://dx.doi.org/10.1111/risa.12769
https://helsedirektoratet.no/Lists/Publikasjoner/Attachments/1216/Samfunnsgevinster.av%20�%20f�lge.Helsedirektoratets%20kostr�d.IS-2451.pdf
https://helsedirektoratet.no/Lists/Publikasjoner/Attachments/1216/Samfunnsgevinster.av%20�%20f�lge.Helsedirektoratets%20kostr�d.IS-2451.pdf
https://helsedirektoratet.no/Lists/Publikasjoner/Attachments/1216/Samfunnsgevinster.av%20�%20f�lge.Helsedirektoratets%20kostr�d.IS-2451.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_dioxins_out78_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_dioxins_out78_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_dioxins_out90_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_dioxins_out90_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_dioxins_out90_en.pdf
http://dx.doi.org/10.1017/S1368980007001450
http://dx.doi.org/10.1017/S0007114511005010
http://dx.doi.org/10.1017/S0007114511005010
http://www.statistikbanken.dk/statbank5a/default.asp?w=1536
http://www.statistikbanken.dk/statbank5a/default.asp?w=1536
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref59
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref59
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref59
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref59
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref60
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref60
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref60
http://www.esundhed.dk
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref62
http://refhub.elsevier.com/S0278-6915(18)30437-X/sref62
https://cfpub.epa.gov/ncea/iris/iris_documents/documents/supdocs/dioxinv1sup.pdf
https://cfpub.epa.gov/ncea/iris/iris_documents/documents/supdocs/dioxinv1sup.pdf
http://dx.doi.org/10.1093/toxsci/kfl055
http://dx.doi.org/10.1016/j.fct.2007.02.009
http://dx.doi.org/10.1016/j.fct.2007.02.009
http://dx.doi.org/10.1016/j.jada.2007.10.050
http://dx.doi.org/10.1016/j.jada.2007.10.050
http://dx.doi.org/10.1016/S0045-6535(99)00358-6
http://dx.doi.org/10.9734/EJNFS/2015/18605


https://vkm.no/download/18.2994e95b15cc54507161ea1a/1498222018046/
0a646edc5e.pdf, Accessed date: 16 March 2016.

WCRF/AICR, 2011. Continous update project report. Food, nutrition, physical activity,
and the prevention of colorectal cancer. Available: http://www.wcrf.org/sites/
default/files/Colorectal-Cancer-2011-Report.pdf, Accessed date: 10 May 2017.

WCRF/AICR, 2016. Continuous Update Project Report: diet, nutrition, physical activity
and stomach cancer. Available: http://www.wcrf.org/sites/default/files/Stomach-
Cancer-2016-Report.pdf, Accessed date: 2 July 2017.

WCRF/AICR, 2007. Food, nutrition, physical activity, and the prevention of cancer: a
global perspective. Available: http://www.aicr.org/assets/docs/pdf/reports/
Second_Expert_Report.pdf, Accessed date: 2 March 2016.

WHO, 2003. Diet, nutrition and the prevention of chronic diseases: report of a joint
WHO/FAO expert consultation. WHO Tech. Rep. Ser. 916 Available: http://eutils.
ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12768890&
retmode=ref&cmd=prlinks%5Cnpapers3://publication/uuid/734F6B31-260B-
4545-A8E4-57F7D35DDEB8.

WHO, 2000. Executive summary of the assessment of the health risk of dioxins: re-eva-
luation of the tolerable daily intake (TDI). May 1998, WHO Consultation, Geneva,

Switzerland. http://dx.doi.org/10.1080/713810655. Available: http://www.who.
int/ipcs/publications/en/exe-sum-final.pdf, Accessed date: 15 December 2016.

WHO, 2008. Guidance for identifying populations at risk from mercury exposure.
Exposure. Available: http://www.who.int/foodsafety/publications/chem/
mercuryexposure.pdf?ua=1, Accessed date: 16 May 2018.

WHO, 2017. WHO Methods and Data Sources for Global burden of Disease Estimates
2000-2015. Global Health Estimates Technical Paper WHO/HIS/HSI/GHE/2017.1
Available: http://www.who.int/healthinfo/global_burden_disease/
GlobalDALYmethods_2000_2015.pdf, Accessed date: 21 May 2017.

Ygil, K.H., 2013. Mål, vægt og portionsstørrelser på fødevarer [Dimensions, weight and
Pportion sizes of foods]. National Food Institute. Technical University of Denmark,
Søborg, Denmark, pp. 1–60. Available: http://www.food.dtu.dk/english/-/media/
Institutter/Foedevareinstituttet/Publikationer/Pub-2013/Rapport_Maal-vaegt-og-
portionsstoerrelser-paa-foedevarer.ashx?la=da, Accessed date: 22 January 2018.

Zeilmaker, M.J., Hoekstra, J., van Eijkeren, J.C.H., de Jong, N., Hart, A., Kennedy, M.,
et al., 2013. Fish consumption during child bearing age: a quantitative risk-benefit
analysis on neurodevelopment. Food Chem. Toxicol. 54, 30–34. http://dx.doi.org/
10.1016/j.fct.2011.10.068.

S.T. Thomsen et al. Food and Chemical Toxicology 120 (2018) 50–63

63

https://vkm.no/download/18.2994e95b15cc54507161ea1a/1498222018046/0a646edc5e.pdf
https://vkm.no/download/18.2994e95b15cc54507161ea1a/1498222018046/0a646edc5e.pdf
http://www.wcrf.org/sites/default/files/Colorectal-Cancer-2011-Report.pdf
http://www.wcrf.org/sites/default/files/Colorectal-Cancer-2011-Report.pdf
http://www.wcrf.org/sites/default/files/Stomach-Cancer-2016-Report.pdf
http://www.wcrf.org/sites/default/files/Stomach-Cancer-2016-Report.pdf
http://www.aicr.org/assets/docs/pdf/reports/Second_Expert_Report.pdf
http://www.aicr.org/assets/docs/pdf/reports/Second_Expert_Report.pdf
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed�&�id=12768890�&�retmode=ref�&�cmd=prlinks%5Cnpapers3://publication/uuid/734F6B31-260B-4545-A8E4-57F7D35DDEB8
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed�&�id=12768890�&�retmode=ref�&�cmd=prlinks%5Cnpapers3://publication/uuid/734F6B31-260B-4545-A8E4-57F7D35DDEB8
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed�&�id=12768890�&�retmode=ref�&�cmd=prlinks%5Cnpapers3://publication/uuid/734F6B31-260B-4545-A8E4-57F7D35DDEB8
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed�&�id=12768890�&�retmode=ref�&�cmd=prlinks%5Cnpapers3://publication/uuid/734F6B31-260B-4545-A8E4-57F7D35DDEB8
http://dx.doi.org/10.1080/713810655
http://www.who.int/ipcs/publications/en/exe-sum-final.pdf
http://www.who.int/foodsafety/publications/chem/mercuryexposure.pdf?ua=1
http://www.who.int/foodsafety/publications/chem/mercuryexposure.pdf?ua=1
http://www.who.int/healthinfo/global_burden_disease/GlobalDALYmethods_2000_2015.pdf
http://www.who.int/healthinfo/global_burden_disease/GlobalDALYmethods_2000_2015.pdf
http://www.food.dtu.dk/english/-/media/Institutter/Foedevareinstituttet/Publikationer/Pub-2013/Rapport_Maal-vaegt-og-portionsstoerrelser-paa-foedevarer.ashx?la=da
http://www.food.dtu.dk/english/-/media/Institutter/Foedevareinstituttet/Publikationer/Pub-2013/Rapport_Maal-vaegt-og-portionsstoerrelser-paa-foedevarer.ashx?la=da
http://www.food.dtu.dk/english/-/media/Institutter/Foedevareinstituttet/Publikationer/Pub-2013/Rapport_Maal-vaegt-og-portionsstoerrelser-paa-foedevarer.ashx?la=da
http://dx.doi.org/10.1016/j.fct.2011.10.068
http://dx.doi.org/10.1016/j.fct.2011.10.068

	Investigating the risk-benefit balance of substituting red and processed meat with fish in a Danish diet
	Introduction
	Methods
	Identification of relevant health effects
	Data used in the model
	Alternative scenarios
	Exposure to food, nutrients and contaminants
	Calculating disability-adjusted life years
	Statistical analysis

	Results
	Substitution of meat with fish
	Exposure assessment
	Disability-adjusted life years

	Discussion
	Conclusions
	Acknowledgements
	Supplementary data
	Transparency document
	References




