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Abstract. Several statistical methods have been proposed for estimating the infection
prevalence based on pooled samples, but these methods generally presume the
application of perfect diagnostic tests, which in practice do not exist. To optimize
prevalence estimation based on pooled samples, currently available and new statistical
models were described and compared. Three groups were tested: (a) Frequentist
models, (b) Monte Carlo Markov-Chain (MCMC) Bayesian models, and (c) Exact
Bayesian Computation (EBC) models. Simulated data allowed the comparison of the
models, including testing the performance under complex situations such as imperfect
tests with a sensitivity varying according to the pool weight. In addition, all models
were applied to data derived from the literature, to demonstrate the influence of
the model on real-prevalence estimates. All models were implemented in the freely
available R and OpenBUGS software and are presented in Appendix S1.
Bayesian models can flexibly take into account the imperfect sensitivity and specificity
of the diagnostic test (as well as the influence of pool-related or external variables)
and are therefore the method of choice for calculating population prevalence based on
pooled samples. However, when using such complex models, very precise information
on test characteristics is needed, which may in general not be available.
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Introduction

Contemporary phenomena such as globalization, global warm-
ing, changing land use and increased water storage, population
growth and urbanization are causing arthropod disease vec-
tors, such as mosquitoes, ticks and sandflies, to be dispersed
from their initial biotopes over the whole world (Sutherst et al.,
1998). The diseases transmitted by these vectors are becoming
a disquieting public and animal health problem (Gratz, 1999),
which needs to be quantified and monitored.

The prevalence of any arthropod-borne pathogen in a
population of vectors reflects the level of transmission of the
pathogen and is a key factor in the epidemiology and risk
analysis of the corresponding disease. Unfortunately, it is not
easy to determine the prevalence in vector populations. As the
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prevalence is often lower than 10% (Katholi et al., 1995; Abel
et al., 1999), high numbers of vectors need to be collected,
and each individual vector in this sample would then need to
be subjected to one or more diagnostic tests to determine its
infection status (Munoz-Zanzi et al., 2006). The resulting high
diagnostic costs necessitated the development of alternative
solutions. The screening of pools or clusters of vectors was
first used over 60 years ago, as reported by Dorfman (1943).
Since then, it has become current practice in mass screening
exercises for medical and veterinary pathogens (Farrington,
1992; Mendoza-Blanco et al., 1996; Cowling et al., 1999;
Martin-Sanchez et al., 2006).

In certain instances, if a pool is detected as positive, it would
be possible to go back to the original constituent samples
and directly count the number of positives and estimate the
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individual-based prevalence. However, because of financial or
practical constraints, this may not always be possible. Statisti-
cal methods that allow estimating the individual-based preva-
lence based on the pool prevalence are therefore needed. The
most straightforward approach would be to divide the number
of positive pools by the total number of samples tested [thereby
obtaining an estimate of the Minimum Infection Rate (MIR)].
However, as the MIR can underestimate the prevalence, sev-
eral other statistical methods have been proposed to estimate
the individual-based prevalence based on the pool prevalence
(Farrington, 1992; Abel et al., 1999; Cowling et al., 1999).

A challenge when estimating the prevalence of an infection
in arthropod vector populations, as in any population, is the
lack of reliable tests (Watt et al., 1997). Perfect diagnostic tests
do not exist, especially when dealing with field collections.
Several diagnostic tests exist for studying infections in
vectors ranging from histological tests to serological tests
and polymerase chain reaction (PCR) tests (Katholi et al.,
1995). The latter allows for the detection of the disease-
causing agent’s DNA in the vectors, and is considered to
have high sensitivity and specificity. Polymerase chain reaction
tests may be complemented using restriction fragment length
polymorphism or gene sequencing approaches to identify the
detected species, thereby increasing the test specificity even
further (Yameogo et al., 1999; Oshaghi et al., 2010). However,
the sensitivity and specificity of any test, including the PCR
test, can be influenced by several endogenous and exogenous
factors, and can thus not be considered as a constant provided
by the diagnostic test manufacturer (Berkvens et al., 2006;
Speybroeck et al., 2011). For example, the test sensitivity can
change according to the presence of inhibitors in the samples
to be tested. During bloodmeals, arthropod vectors engorge
themselves, which may bring about inhibiting effects on the
TAQ polymerase, an enzyme intervening in the PCR process
(Schwartz et al., 1997; Al-Soud et al., 2005). It is therefore
expedient to have statistical techniques that can account for
these imperfect and variable test characteristics.

The present study describes and compares existing and
new models for estimating the prevalence in haematophagous
arthropod populations, and explores how models can account
for the effect of modulating factors on the test characteristics,
using the inhibition example.

Materials and methods

The present study will:

• describe methods for estimating infection prevalence in
vector populations based on pooled samples,

• synthesize existing computer code for these models and,
where necessary, present new code,

• adjust the various models, where possible, to account
for imperfect tests with and without dependence on
modulating factors, exploring e.g. the feasibility of the
diagnostic test sensitivity to be a function of endogenous
or exogenous factors, such as inhibition,

• test the various models using data generated according to
predefined prevalences and test characteristics,

• apply the models to data from the literature and
• compare the performance of the various models.

Statistical formulations

The following notations will be used:

• p: individual-based prevalence
• k: size of the pools (kj if the pool sizes vary)
• PT : true probability of having at least one vector positive

in the pool; PT = 1 − (1 − p)k

• SE : sensitivity of the test for diagnosing individual
samples; SE = number of true positive samples/(number
of true positive samples + number of false negative
samples)

• SP : specificity of the test for diagnosing individual
samples; SP = number of true negative samples/(number
of true negative samples + number of false positive
samples).

• SEP : sensitivity of the test for diagnosing sample pools;
SEP = number of true positive pools/(number of true
positive pools + number of false negative pools)

• SPP : specificity of the test for diagnosing sample pools;
SPP = number of true negative pools/(number of true
negative pools + number of false positive pools) and

• PA: apparent prevalence of the pools; PA = number of
test-positive pools/total number of pools.

Mathematical basis of pool testing

Each sample that is part of a pool can either be truly positive
or truly negative. We can therefore represent the infection
status of each individual sample using an independent and
identically distributed (i.i.d.) Bernoulli(p) random variable xi ,
such that:

xi =
{

1 with probability p

0 with probability (1 − p)
(1)

The probability PT of finding at least one positive sample in
a pool of size k is given by Chiang & Reeves (1962):

PT = 1 − (1 − p)k (2)

Therefore, the result of the pool test may be represented by an
i.i.d. Bernoulli(PT ) random variable yj where:

yj =
{

1 with probability 1 − (1 − p)k

0 with probability (1 − p)k
(3)

By grouping the individual samples in n pools of size kj

(j = 1,2, . . . , n), the apparent pool prevalence PA may be
calculated by dividing the number of positive pools by the
number of pools tested:

PA =
∑n

j=1 yj

n
(4)
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When the diagnostic test is perfect (i.e. SE = SP = 1), the
apparent pool prevalence PA is an unbiased estimator of the
true probability PT of obtaining at least one positive sample
in the group of samples. In case of constant pool sizes (i.e.
kj = k), the true individual-based prevalence p may then be
estimated by transforming Eqn (2):

p =̇ 1 − (1 − PA)
1
k (5)

In practice, however, perfect diagnostic tests do not exist (i.e.
SE and/or SP �= 1). As the probability SE (SP ) of a truly
positive (negative) individual sample to test positive (negative)
is less than 100%, the probability SEP (SPP ) of a truly positive
(negative) pool of samples to test positive (negative) will
equally be less than 100% (Munoz-Zanzi et al., 2006). The
relationship between the individual and pool test characteristics
are given by Boelaert et al. (2000):

SEP = 1 − [(1 − SE )kp ∗ SP k(1−p)] (6)

SPP = SP k (7)

Under the condition of an imperfect diagnostic test, PA

no longer is an unbiased estimator of PT , as the apparent
prevalence PA then estimates a function of the pool sensitivity
SEP and the pool specificity SPP :

PA ≈ PT ∗ SEP + (1 − PT )(1 − SPP ) (8)

By replacing PT by its expression in Eqn (2), we obtain:

PA ≈ [1 − (1 − p)k] ∗ SEP + (1 − p)k(1 − SPP ) (9)

From Eqn (9), and considering a fixed pool size, it can be
shown that:

p =̇ 1 −
[

SEP − PA

SEP + SPP − 1

]1/k

(10)

Prevalence estimation models

Estimating infection prevalence in vector populations based
on pooled samples can be done using either a frequentist or a
Bayesian statistical philosophy (Messam et al., 2008). In the
frequentist philosophy, a population parameter is assumed to
have a single fixed value, and a 95% ‘confidence’ interval for
this parameter is considered to be the interval which should
contain the real value in 95% of the cases, if the test were
to be repeated a large number of times. Methods known as
being frequentist typically do not take account of existing (a
priori ) knowledge on the diagnostic test characteristics (but see
Cowling et al., 1999; Vansteelandt et al., 2000 for examples of
using known fixed sensitivity and specificity when estimating
the prevalence). In the present study, we will examine the
frequentist maximum likelihood (ML) estimation model that
assumes perfect tests (Farrington, 1992; Cowling et al., 1999;
Williams & Moffitt, 2001, 2005).

In the Bayesian philosophy, population parameters are
assumed to have an intrinsic probability distribution. This
approach produces a 95% ‘credibility’ interval, meaning that,
given the observations, there is a 95% chance that the
true value lies between the limits of the credibility interval
(Gardner, 2002). The Bayesian philosophy combines field data
and expert (a priori ) opinions in a single model, combining test
results with a priori information on the test characteristics (i.e.
sensitivity and specificity), resulting in an a posteriori prob-
ability distribution of the prevalence. The Bayesian approach
can incorporate uncertainty on unknown and variable param-
eters (such as diagnostic test characteristics), and allows for
a flexible combination of complex equations. These methods,
initially developed for estimating the prevalence based on indi-
vidual samples (Enoe et al., 2000), were thereafter extended
to estimation based on the pooled samples (Mendoza-Blanco
et al., 1996; Cowling et al., 1999). In the present study, two
categories of Bayesian approaches will be appraised, i.e. the
Monte Carlo Markov-Chain (MCMC) Bayesian models and
the Exact Bayesian Computation (EBC) models.

The 14 models presented and compared in the present study,
are categorized in 3 groups (i.e. frequentist, MCMC and EBC
models). The models are implemented in R (R Development
Core Team, 2010) and OpenBUGS (Lunn et al., 2009), which
are both freely available and open-source software environ-
ments. R is an interactive programming language developed
for statistical analyses and graphics, whereas OpenBUGS is
a package specifically designed to conduct Bayesian analyses.
An overview of the models and their implementation meth-
ods is given in Table 1. The source code of these models is
presented in Appendix S1.

Frequentist models. An estimate of the true prevalence
can be computed using the ML approach (Farrington, 1992;
Cowling et al., 1999; Williams & Moffitt, 2001, 2005), the
method implemented in currently available software programs
such as PoolScreen™ (Katholi et al., 1995) and PooledInfRate
(Biggerstaff, 2009). For fixed pool sizes and under the
assumption of a perfect test, the ML estimator of the prevalence
can be calculated according to Eqn (5). In case of a fixed
pool size and a test with known test characteristics, the ML
estimate corresponds to Eqn (10). Uncertainty regarding the
test characteristics is, however, typically not incorporated in
frequentist models of disease prevalence.

In case of variable pool sizes, the ML estimator is more
difficult to express in a closed form. One possible approach is
to use a generalized linear model (GLM) (Farrington, 1992),
i.e. a logistic regression equation with the complementary log-
log (cloglog) link function. For estimating the ML of the
prevalence, the cloglog function can be written as follows:
cloglog(PT ) = ln[– ln(1–PT )], with PT the true prevalence
of the pools. Considering Eqn (2), we obtain the following:

cloglog(PT ) = ln[– ln[(1–p)k]]

= ln[−k ∗ ln(1–p)]

= ln(k) + ln[− ln(1–p)] (11)
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Table 1. Overview of the 14 models used to estimate the individual-based prevalence based on diagnostic test results obtained through testing
pools of samples.

Group Case Model Implementation

Frequentist models Perfect individual test Wald-type confidence interval 1-WALD R
Inverted likelihood-ratio test 1-INV R
based confidence interval

Monte Carlo
Markov-Chain (MCMC)
Bayesian models

Perfect individual test With regression logit link 2aR-LOG OpenBUGS
cloglog link 2aR-CLL OpenBUGS

Without regression 2aD OpenBUGS
Imperfect individual test, constant test

characteristics
With regression logit link 2bR-LOG OpenBUGS

cloglog link 2bR-CLL OpenBUGS
Without regression 2bD OpenBUGS

Imperfect individual test, test characteristics
dependent on pool weights

With regression logit link 2cR-LOG OpenBUGS
cloglog link 2cR-CLL OpenBUGS

Without regression 2cD OpenBUGS

Exact Bayesian
Computation (EBC)
models

Perfect individual test 3a R/C++
Imperfect individual test, constant test

characteristics
3b R/C++

Imperfect individual test, test characteristics
dependent on pool weights

3c R/C++

Model annotations: 1 = Frequentist cloglog model with Wald-type confidence intervals (WALD) or confidence intervals calculated by inverting the
likelihood-ratio test (INV); 2 = Bayesian MCMC models based on regression using a cloglog link (R-CLL), regression using a logit link (R-LOG),
or direct estimation (D); 3 = Exact Bayesian computation model. The letter ‘a’ in the model annotations indicates models considering perfect test
characteristics, the letter ‘b’ indicates models considering imperfect test characteristics, and the letter ‘c’ indicates models considering imperfect
test characteristics that are a function of the pool weights.

There are two components in the right side of this equation,
i.e. ln(k), the so-called offset, and ln[− ln(1 − p)], which is a
constant (β). We can therefore write:

cloglog(PT ) = ln(k) + β (12)

and the individual-based prevalence p can then be obtained by
back-transforming β:

p = 1– exp[− exp(β)] (13)

The R code is shown in the Appendix S1 for estimation of
the cloglog model parameters. The presented R code cre-
ates Wald-type confidence intervals for the prevalence [of the
form estimate ± multiplier (standard error)], as well as con-
fidence intervals constructed by inverting the likelihood-ratio
test (Williams & Moffitt, 2001). Both methods are shown in
the results, and denoted as Model 1-WALD and Model 1-INV,
respectively.

Monte Carlo Markov-Chain Bayesian models. The MCMC
Bayesian models (hereafter just called MCMC models) apply
an iterative Bayesian technique for estimating the prevalence.
Unlike the frequentist ML estimation methods, the MCMC
models use a given prior probability distribution Prob(θ ) of the
population parameter θ , which is combined with the observed
likelihood Prob(Data|θ ) to obtain the posterior distribution
Prob(θ |Data):

Prob(θ |Data) ∝ Prob(θ) ∗ Prob(Data|θ) (14)

This allows for the incorporation of prior knowledge on
the parameters to be estimated, such as prior knowledge on
the uncertainty of the test characteristics in the prevalence
estimation.

According to the test characteristics, three cases are
considered:

Model 2a: Perfect individual test (SE = SP = 1).
Model 2b: Imperfect individual test (SE and/or SP �= 1),

test characteristics independent of the pool weight. The pool
sensitivity and specificity are derived directly from Eqns (6)
and (7).

Model 2c: Imperfect individual test (SE and/or SP �= 1), test
sensitivity as a function of the pool weight. In order to explore
the effect of modulating factors, the pool sensitivity is for-
mulated as a decreasing logistic function of the pool weight
Eqn (15). The inversely proportional relation between the sen-
sitivity and the pool weight corresponds to the assumption that
the inhibition of the PCR test may be proportional to the quan-
tity of blood (and inhibitors), and thus to the weight of the
pools of vectors. This assumption is then incorporated in the
models to correct the pool sensitivity given by Eqn (6).

wSEP =
[

exp(a + b ∗ Weight)

1 + exp(a + b ∗ Weight)

]
(15)

Where,

wSEP = weight-adjusted pool sensitivity;
a = constant or intercept, reflecting the pool sensitivity
when the weight is not taken into account;
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b = regression coefficient or slope, linking the sensitivity
and the sample weight; and
Weight = weight of the pool in grams.

The parameter a is given by Eqn (16), with SEp the un-
adjusted (and thus maximum) test sensitivity:

a = ln

[
SEp

1 − SEp

]
(16)

For each of these three cases, two types of MCMC models
are presented, a type that uses regression models to relate
the observed pool results to the individual-based prevalence
(Models 2aR, 2bR and 2cR), and a type that does not use
regression models but directly estimates the individual-based
prevalence (Models 2aD, 2bD and 2cD):

Models 2aR, 2bR and 2cR: MCMC regression models
As in the frequentist approach, a GLM for binomial data

may also be used for Bayesian prevalence estimations. These
models use logistic regression equations with the cloglog or
the logit link to relate the pool prevalence to individual-
based prevalence (Farrington, 1992; Vansteelandt et al., 2000)
(referred to as CLL and LOG in the model designations). The
cloglog function was previously described (see the frequentist
model). The logit function is given by: logit(p) = ln

(
p

1−p

) =
�, where � is a constant. By back-transforming �, the
individual-based prevalence p may be obtained:

p = exp(�)

1 + exp(�)
(17)

Models 2aD, 2bD, and 2cD: MCMC models without regression
Different from the models with regression using a (logit

or cloglog) link function, the models without regression use
Eqns (5) and (10) and thus directly estimate the prevalence
from the apparent prevalence (hence the notation ‘D’).

Exact Bayesian Computation (EBC) models. Unlike the fre-
quentist and MCMC models, the EBC models are based on
a likelihood-free methodology. The EBC models repeatedly
simulate a random population parameter based on the param-
eter’s prior distribution, and use this value to simulate a data
set. Through an accept/reject algorithm, the parameter val-
ues that exactly result in the observed data set are accepted,
whereas other values are rejected. The distribution of the
accepted values is then regarded as a sample from the popula-
tion parameter’s posterior distribution. This approach is similar
to the Approximate Bayesian Computation (ABC) algorithms
(Pritchard et al., 1999; Tanaka et al., 2006; Sisson et al., 2007),
except that the EBC algorithm requires an exact match to
the data and hence is not approximate. The EBC approach
is very flexible and powerful and can be used for very com-
plex models, but may become computationally intensive. The
EBC models developed for the present study are implemented
in the R software, using code that calls on additional func-
tions written in C++ (for increased speed). As for the MCMC
models, three cases are considered (Model 3a, Model 3b and
Model 3c).

Model 3a: Perfect individual test: the following steps are
performed:

• sample a random prevalence p∗ based on a prior Uniform
(0, 1) distribution;

• use this prevalence to generate a vector of Bernoulli(p∗)
random variables x∗

i ;
• assign these values to pools according to the sampling

design used in the experiment;
• determine the pool results y∗

j : if a pool contains at least
one positive sample, it is positive (y∗

i = 1), otherwise it
is negative (y∗

j = 0);
• accept p∗ if it resulted in the observed pool results (i.e.,

y∗ = y), otherwise reject it;
• repeat these steps until the required number of accepted

values is obtained; and
• compute the accepted prevalence average and 95%

credibility interval.

Model 3b: Imperfect individual test, constant test charact-
eristics

The procedure of this model is similar to the one described
for Model 3a, but now imperfect test sensitivity and specificity
are included. Based on, for example, expert opinion, probabil-
ity distributions for the test characteristics are defined. Experts
can for example define the minimum and maximum values of
a parameter, which can be used to create the appropriate dis-
tribution. These distributions are then used to draw random
sensitivities and specificities. Based on these randomly drawn
values, Bernoulli random variables are generated and used to
determine the apparent pool results.

Model 3c: Imperfect individual test, test sensitivity as a
function of the pool weight

In addition to Model 3b, this model includes a probability
distribution for the slope parameter b of the test sensitivity
modulating function, as explained for Model 2c. Randomly
generated values for b are then included in Eqn (15), in order
to obtain weight-adjusted pool sensitivities. These values are
then used to calculate the apparent pool results as in Model 3b.

Data used to test the models

The 14 statistical models are tested on different datasets.
Two types of datasets will be used: simulated data and data
derived from the literature.

Simulated data. To examine the efficiency of the different
methods in estimating the individual-based prevalence, we
simulate the process of pooled testing based on a predefined
and thus known individual-based prevalence (Gu et al., 2004).
Furthermore, published studies generally do not report on the
possible pool-related or external factors that can influence
test characteristics. Only simulated data allow exploring the
strength of the models to deal with these effects.

Three cases of increasing complexity with respect to the test
characteristics have been considered in the previous section.
In agreement with the characteristics used in these cases,
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Table 2. Simulated sample pool results, based on two times six pools of 5, 10, 20, 30, 40 and 50 samples.

Prevalence (%) Case a (SE = SP = 1; b = 0) Case b (SE = 0.8; SP = 1; b = 0) Case c (SE = 0.8; SP = 1; b = −0.07)

0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
4 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

10 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0

The pool weights used for case c were 5.59, 21.69, 21.52, 39.95, 58.39, 79.88, 8.51, 11.90, 27.86, 40.00, 86.52 and 105.45. 0’s represent negative
pools, 1’s represent positive pools.

pool data were generated. For the case presuming a perfect
individual test (case a), the individual test sensitivity and
specificity were fixed to 100%. For the cases presuming
an imperfect individual test (cases b and c), an individual
sensitivity of the PCR was set to be 80%. The individual
test specificity was assumed to be 100%. In addition, for the
case where test sensitivity was presumed to be imperfect and
a function of the pool weight (case c), the slope parameter
b of the logistic regression function was set to −0.07. These
choices were made arbitrarily, but represent realistic scenarios
of the respective parameters.

For each case, four simulations were generated, based on
four typically low prevalence values (i.e. 0%, 1%, 4% and
10%). The pooling strategy was the same in each simulation,
i.e. two times six pools of 5, 10, 20, 30, 40 and 50 samples.
This strategy is based on Gu et al. (2004), who concluded that
variable pool sizes allow more accurate prevalence estimations
than constant pool sizes. Indeed the pooling strategy has an
important influence on the prevalence estimation. For details
on how to design an optimal pooling strategy, we refer to
the work of Gu and colleagues (Gu et al., 2004, 2008; Gu &
Novak, 2004). It is beyond the scope of the present study to
compare different pooling strategies, hence the choice for a
single strategy which is proven to be reliable under a wide
range of prevalences (Gu et al., 2004).

As we focus on comparing the different estimation models,
we selected the most representative pool results for the
respective case and prevalence. For each combination, 5000
simulations were generated and the frequency of each different
combination of pool results was calculated. The combination
that corresponded to the median frequency was selected,
thereby avoiding the selection of extreme pool results.

The simulation program used for this purpose is written in R,
and is presented in the Appendix S1. It generates pool results
under the three cases considered in the simulation study:

The simulation program runs through the following steps to
generate the data:

• generate 310 Bernoulli(p) random variables (1 for each
individual sample in the 12 pools), with p the selected
individual-based prevalence;

• generate 310 sample weights, by exponentiating random
variables from the standard normal distribution;

• regroup both results in 2 × 6 pools of size 5, 10, 20, 30,
40 and 50;

• determine the true pool results yTj : if a pool contains
at least one positive sample, it is positive (yTj = 1),
otherwise it is negative (yTj = 0);

• calculate SEP and SPP , based on Eqns (6) and (7), using
the user-defined values for SE and SP ;

• model the sensitivity as a logistic function of the pool
weights previously calculated (based on a Eqns (15) and
(16), and a user-defined slope b);

• generate a Bernoulli(SEP ) and Bernoulli(SPP ) random
variable; and

• determine the apparent pool results yAj : if yTj = 1 and
SEP = 0, let yAj = 0 (false negative), if yTj = 0 and
SPP = 0, let yAj = 1 (false positive), otherwise let yAj =
yTj .

The results of the simulations used in the present study are
presented in Table 2.

Literature data. In addition to the simulated data, published
data were used to assess the models in realistic (thus imperfect)
settings. The selected data are from studies of vectors
transmitting parasites to humans and animals, i.e. sandflies
(infected with Leishmania spp.) and ticks [Amblyomma
americanum (Linnaeus) (Acari: Ixodidae), the lone star tick,
infected with Borrelia lonestari (Barbour) (Spirochaetales:
Spirochaetaceae)]. Table 3 summarizes the selected data. More
datasets were tested (e.g. Williams & Moffitt, 2001) but
patterns were similar to those reported here.

Application of the different models

The simulated and published pool results were analysed
with the 14 different models. For the models considering an
imperfect test sensitivity, we used a uniform prior distribution
for sensitivity ranging from 60% to 95%. For the models
that consider test sensitivity as a function of the pool weight,
we applied a Normal(μ = −0.07, σ 2 = 0.04) prior for the
slope parameter, based on Gelman et al. (2008). Finally, a
Uniform(0,1) prior was used for the prevalence in all MCMC
models [note that a Uniform(0,1) distribution corresponds to a
Beta(1,1) distribution, as applied in our code]. The choice of
these distributions and their values reflects expert opinion on
the uncertain parameters. Depending on the situation, users
applying these models should select the appropriate prior
distributions and parameters.

The nine MCMC models are implemented in OpenBUGS,
using 10 000 iterations and two chains. Only 8000 iterations
were retained, because the first 2000 iterations correspond
to the ‘burn-in’ iterations needed to obtain a stable and
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Table 3. Literature data used to test the different estimation models.

Species, location and year of collection Pool sizes∗
Number of
pools

Number of
positive pools Source

Sandflies, Alfacar, Spain, 1998 30 10 2 1
Sandflies, Viznar, Spain, 2004 30 17 0 1
Sandflies, Duhabi, Nepal, 2007 5, 10, 11, 11, 9, 11∗, 13, 2∗, 17, 8, 13, 16, 16, 17, 1, 2,

3, 12, 11, 20, 20, 20, 20, 19, 1, 20, 20, 20, 18, 2, 5, 14,
14, 14, 14, 4, 14, 18, 19, 6, 20, 14, 1, 9, 20, 4, 1, 1, 1,
16, 14, 2, 8, 6

54 2 2

Sandflies, Aurabani, Nepal, 2007 2, 1, 6, 10, 1, 7, 1, 4, 1∗, 3 10 1 2
Ticks (Amblyomma

americanum), Pulaski County
(Missouri), U.S.A.

5 7 2 3

1 = Martin-Sanchez et al. (2006); 2 = Bhattarai et al. (2009); 3 = Bacon et al. (2005).
∗In case of variable pool sizes, the positive pools are marked with an asterisk.

converging distribution of the parameters to estimate. The
Brooks–Gelman–Rubin (BGR) statistic was used to check the
convergence of the models in accordance with the principles of
Brooks & Gelman (1998). For the 3 EBC models, 500 accepted
simulations were retained.

Results

Estimates and confidence or credibility intervals obtained with
the different models are presented in Tables 4–7. For all
MCMC models in OpenBUGS, the BGR statistic indicated
convergence of the various models.

Simulation study

The first simulation assumed a perfect diagnostic test
sensitivity and specificity. All models that considered a
perfect individual test were able to produce estimates that
match the true prevalence reasonably well. The estimates of
the Bayesian models that wrongly considered an imperfect
individual test were biased upwards. Confidence and credible
intervals widened as the true prevalence increased.

The frequentist cloglog model estimates were lower than
those obtained using the other models. The results of the three
MCMC models belonging to case a were similar, as was the
case for the results of the three MCMC models belonging to
case b. The results and credibility intervals of the EBC models
approximated those of the corresponding MCMC models.

When all pools had the same results (i.e. if all pools were
positive or negative), the Wald-type confidence interval for the
frequentist cloglog model resulted in a degenerative 0–100
confidence interval. The likelihood-ratio-based method, on the
other hand, did permit calculation of an appropriate confidence
interval.

For the second simulated case, the test sensitivity was set to
be imperfect, but independent of the pool weight. The estimates
of the frequentist model and those of the Bayesian models
assuming perfect test characteristics (case a) were lower than
the true prevalence. The estimates of the Bayesian models that

considered an imperfect individual test (case b) were closer to
the true prevalence.

For this final simulation, with test sensitivity assumed to be
imperfect and inversely related to the pool weight, all models
were fitted to the simulated pools data. The four Bayesian mod-
els belonging to case c generated similar results, which tended
to be better estimators of the true prevalence than the models
belonging to case a and b. Especially for a high true preva-
lence, the models that did not incorporate the extra uncertainty
on the slope parameter were not able to generate confidence
or credibility intervals that included the true prevalence. How-
ever, the credibility intervals of the models belonging to case c
were wider than those of the other models. It can also be noted
that it was only possible to obtain a prevalence close to the
one used during the generation of the data if the variance of
the prior (i.e. constraint) on the slope parameter of the logis-
tic function linking the sensitivity and the weight was very
small.

Literature data

With the literature data, similar trends were observed
as obtained with the simulation study, such as the lower
estimations obtained with the frequentist cloglog model and
the similar results obtained with the corresponding MCMC and
EBC models. The absolute difference between the frequentist
model, the Bayesian models assuming perfect tests and the
Bayesian models presuming imperfect tests increased as the
apparent prevalence increased.

Discussion

With the appearance of Bluetongue in Europe (Purse et al.,
2005) and the continuous presence of important vector-borne
diseases such as Malaria and Leishmaniasis in various parts
of the world, arthropod vectors remain a world concern and
deserve the required attention. The estimation of the prevalence
of pathogens within these vector populations will remain a
crucial prerequisite in understanding the economic and health
threat and burden arising from these diseases (Inci et al.,
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Table 4. Prevalence estimation results and corresponding 95% confidence or credibility intervals for sample pool results simulated under the
assumption of a perfect individual test (case a).

True prevalence (%)

Model 0 1 4 10

1-WALD 0.00 (0.00–100.00) 1.16 (0.37–3.61) 3.51 (1.56–7.82) 16.69 (6.16–40.83)
1-INV 0.00 (0.00–0.62) 1.16 (0.29–3.02) 3.51 (1.34–7.61) 16.69 (6.47–38.21)
2aR-CLL 0.33 (0.00–0.96) 1.55 (0.43–3.40) 4.26 (1.64–8.25) 21.06 (7.94–41.70)
2aR-LOG 0.33 (0.00–0.96) 1.55 (0.43–3.40) 4.26 (1.64–8.25) 21.06 (7.94–41.70)
2aD 0.33 (0.00–0.96) 1.55 (0.43–3.40) 4.26 (1.64–8.25) 21.06 (7.94–41.70)
2bR-CLL 0.59 (0.00–1.61) 2.49 (1.04–4.64) 5.67 (2.53–10.39) 25.64 (10.54–50.20)
2bR-LOG 0.59 (0.00–1.61) 2.49 (1.04–4.64) 5.67 (2.53–10.39) 25.64 (10.54–50.20)
2bD 0.59 (0.00–1.61) 2.49 (1.04–4.64) 5.67 (2.53–10.39) 25.64 (10.54–50.20)
3a 0.31 (0.00–0.90) 1.56 (0.46–3.60) 4.27 (1.43–8.67) 20.83 (8.60–42.66)
3b 0.62 (0.00–1.57) 2.44 (0.91–4.48) 5.52 (2.55–10.10) 26.06 (11.68–49.52)

Model annotations: 1 = Frequentist cloglog model with Wald-type confidence intervals (WALD) or confidence intervals calculated by inverting the
likelihood-ratio test (INV); 2 = Bayesian MCMC models based on regression using a cloglog link (R-CLL), regression using a logit link (R-LOG),
or direct estimation (D); 3 = Exact Bayesian computation model. The letter ‘a’ in the model annotations indicates models considering perfect test
characteristics, while the letter ‘b’ indicates models considering imperfect test characteristics.

Table 5. Prevalence estimation results and corresponding 95% confidence or credibility intervals for sample pool results simulated under the
assumption of an imperfect individual test with constant test characteristics (case b).

True prevalence (%)

Model 0 1 4 10

1-WALD 0.00 (0.00–100.00) 0.34 (0.05–2.41) 2.57 (1.07–6.07) 6.21 (2.83–13.33)
1-INV 0.00 (0.00–0.62) 0.34 (0.02–1.51) 2.57 (0.90–5.74) 6.21 (2.59–13.40)
2aR-CLL 0.33 (0.00–0.96) 0.69 (0.09–1.94) 3.17 (1.14–6.31) 7.70 (3.03–15.00)
2aR-LOG 0.33 (0.00–0.96) 0.69 (0.09–1.94) 3.17 (1.14–6.31) 7.70 (3.03–15.00)
2aD 0.33 (0.00–0.96) 0.69 (0.09–1.94) 3.17 (1.14–6.31) 7.70 (3.03–15.00)
2bR-CLL 0.59 (0.00–1.61) 1.28 (0.31–2.82) 4.41 (2.01–7.95) 9.57 (4.39–17.74)
2bR-LOG 0.59 (0.00–1.61) 1.28 (0.31–2.82) 4.41 (2.01–7.95) 9.57 (4.39–17.74)
2bD 0.59 (0.00–1.61) 1.28 (0.31–2.82) 4.41 (2.01–7.95) 9.57 (4.39–17.74)
3a 0.31 (0.00–0.90) 0.69 (0.09–1.87) 3.07 (0.95–6.42) 7.78 (3.14–14.19)
3b 0.62 (0.00–1.57) 1.32 (0.30–3.03) 4.35 (1.94–7.94) 9.44 (4.39–16.71)

Model annotations: 1 = Frequentist cloglog model with Wald-type confidence intervals (WALD) or confidence intervals calculated by inverting the
likelihood-ratio test (INV); 2 = Bayesian MCMC models based on regression using a cloglog link (R-CLL), regression using a logit link (R-LOG),
or direct estimation (D); 3 = Exact Bayesian computation model. The letter ‘a’ in the model annotations indicates models considering perfect test
characteristics, while the letter ‘b’ indicates models considering imperfect test characteristics.

2007). Owing to various logistic and financial reasons, the
testing of pools of individual vector samples is often preferred
(Munoz-Zanzi et al., 2006). As the underlying prevalence
in the vector population cannot be readily estimated from
these pools, adapted analytical techniques are warranted. The
present study reviewed frequentist and Bayesian methods
for estimating individual-based prevalence using results from
pools of samples. In addition, a code was developed to estimate
the prevalence based on EBC models, a flexible and easily
extendable method which has seldom been used in the past
(Bhattarai et al., 2009). The code of all models used in the
present study is included in Appendix S1, allowing users to
easily apply and analyse the presented models.

To evaluate the efficiency of the various models, pool results
were generated based on known true prevalences. Three situ-
ations were tested. First, under the assumption of a ‘refer-
ence standard’ test (i.e. perfect test sensitivity and specificity),
all models that assumed perfect individual tests were able to

reliably reproduce the true prevalence. If the test characteristics
were wrongly assumed to be suboptimal, however, the results
tended to be biased, as expected. In our case, the wrongly
assumed suboptimal sensitivity tended to overestimate the true
prevalence, as compensation for the wrongly assumed high
proportion of false negatives. Confidence and credibility inter-
vals widened as the true prevalence increased, which might be
a consequence of the increasing variability as the true preva-
lence approaches 50%. In addition, as the individual-based
prevalence increases, the chance of a pool being positive, thus
obtaining a high pool prevalence, increases. In this situation,
models may fail to generate precise and unbiased estimates.
Gu et al. (2004, 2008) showed that the variable size pool-
ing design used in the present study provides better estimates
than a constant size pooling design, and this for a range of
true infection rates between 0% and 10%. The upper limit of
this range refers to the situation where the likelihood that all
pools will be positive becomes too high, and may explain the
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Table 6. Prevalence estimation results and corresponding 95% confidence or credibility intervals for sample pool results simulated under the
assumption of an imperfect individual test with test sensitivity as a function of the pool weight (case c).

True Prevalence (%)

Model 0 1 4 10

1-WALD 0.00 (0.00–100.00) 0.00 (0.00–100.00) 0.33 (0.05–2.40) 3.78 (1.69–8.32)
1-INV 0.00 (0.00–0.62) 0.00 (0.00–0.62) 0.33 (0.02–1.46) 3.78 (1.58–7.60)
2aR-CLL 0.33 (0.00–0.96) 0.33 (0.00–0.96) 0.67 (0.09–1.86) 4.39 (1.84–8.16)
2aR-LOG 0.33 (0.00–0.96) 0.33 (0.00–0.96) 0.67 (0.09–1.86) 4.39 (1.84–8.16)
2aD 0.33 (0.00–0.96) 0.33 (0.00–0.96) 0.67 (0.09–1.86) 4.39 (1.84–8.16)
2bR-CLL 0.59 (0.00–1.61) 0.59 (0.00–1.61) 1.29 (0.31–2.83) 5.83 (2.97–9.97)
2bR-LOG 0.59 (0.00–1.61) 0.59 (0.00–1.61) 1.29 (0.31–2.83) 5.83 (2.97–9.97)
2bD 0.59 (0.00–1.61) 0.59 (0.00–1.61) 1.29 (0.31–2.83) 5.83 (2.97–9.97)
2cR-CLL 8.93 (0.00–26.22) 8.93 (0.00–26.22) 11.26 (0.76–32.53) 12.66 (2.66–32.25)
2cR-LOG 8.93 (0.00–26.22) 8.93 (0.00–26.22) 11.26 (0.76–32.53) 12.66 (2.66–32.25)
2cD 8.93 (0.00–26.22) 8.93 (0.00–26.22) 11.26 (0.76–32.53) 12.66 (2.66–32.25)
3a 0.31 (0.00–0.93) 0.33 (0.00–0.98) 0.68 (0.10–2.04) 4.39 (2.01–7.60)
3b 0.61 (0.00–1.56) 0.58 (0.00–1.53) 1.29 (0.30–2.81) 5.82 (2.94–9.90)
3c 9.74 (0.00–26.92) 9.27 (0.00–28.72) 11.02 (0.88–31.40) 12.44 (2.84–32.37)

Model annotations: 1 = Frequentist cloglog model with Wald-type confidence intervals (WALD) or confidence intervals calculated by inverting the
likelihood-ratio test (INV); 2 = Bayesian MCMC models based on regression using a cloglog link (R-CLL), regression using a logit link (R-LOG),
or direct estimation (D); 3 = Exact Bayesian computation model. The letter ‘a’ in the model annotations indicates models considering perfect test
characteristics, the letter ‘b’ indicates models considering imperfect test characteristics, and the letter ‘c’ indicates models considering imperfect
test characteristics that are a function of the pool weights.

Table 7. Prevalence estimation results and corresponding 95% confidence or credibility intervals for previously reported sample pool results.

Data source

Model Viznar Duhabi Alfacar Aurabani Pulaski County

1-WALD 0.00 (0.00–100.00) 0.33 (0.08–1.32) 0.74 (0.19–2.94) 2.78 (0.37–19.33) 6.51 (1.66–23.73)
1-INV 0.00 (0.00–0.38) 0.33 (0.05–1.01) 0.74 (0.12–2.28) 2.78 (0.16–11.67) 6.51 (1.11–18.93)
2aR-CLL 0.20 (0.00–0.58) 0.49 (0.10–1.18) 1.11 (0.23–2.67) 5.26 (0.68–14.11) 9.20 (1.99–21.08)
2aR-LOG 0.20 (0.00–0.58) 0.49 (0.10–1.18) 1.11 (0.23–2.67) 5.26 (0.68–14.11) 9.20 (1.99–21.08)
2aD 0.20 (0.00–0.58) 0.49 (0.10–1.18) 1.11 (0.23–2.67) 5.26 (0.68–14.11) 9.20 (1.99–21.08)
2bR-CLL 0.45 (0.00–1.18) 1.56 (0.57–2.97) 1.95 (0.71–3.82) 9.88 (2.50–21.40) 14.42 (5.31–28.14)
2bR-LOG 0.45 (0.00–1.18) 1.56 (0.57–2.97) 1.95 (0.71–3.82) 9.88 (2.50–21.40) 14.42 (5.31–28.14)
2bD 0.45 (0.00–1.18) 1.56 (0.57–2.97) 1.95 (0.71–3.82) 9.88 (2.50–21.40) 14.42 (5.31–28.14)
3a 0.19 (0.00–0.56) 0.47 (0.10–1.25) 1.12 (0.21–2.51) 5.35 (0.49–13.63) 9.00 (2.31–21.63)
3b 0.47 (0.00–1.19) 1.55 (0.68–2.84) 1.97 (0.68–3.99) 10.02 (2.31–19.00) 14.67 (5.56–29.16)

Model annotations: 1 = Frequentist cloglog model with Wald-type confidence intervals (WALD) or confidence intervals calculated by inverting the
likelihood-ratio test (INV); 2 = Bayesian MCMC models based on regression using a cloglog link (R-CLL), regression using a logit link (R-LOG),
or direct estimation (D); 3 = Exact Bayesian computation model. The letter ‘a’ in the model annotations indicates models considering perfect test
characteristics, while the letter ‘b’ indicates models considering imperfect test characteristics.

overestimation and uncertainty for our simulation based on a
10% true individual-based prevalence.

In real settings, test characteristics are rarely perfect, and
false-negative or false-positive results are known to occur in
all kinds of diagnostic tests, even in PCR assays, which are
generally assumed to have superior test characteristics (Katholi
et al., 1995). The second simulation therefore generated pool
results based on imperfect individual test sensitivity. The pool
sensitivity was then calculated based on the pool size and
expected prevalence (Boelaert et al., 2000). In contrast to the
previous case, models assuming perfect test characteristics,
most notably the frequentist cloglog model, were not able to
reproduce the true prevalence, but tended to underestimate it.
This is logical as not accounting for a suboptimal sensitivity
will result in false negatives lowering the apparent prevalence.

Bayesian models that took in account prior knowledge on
the test sensitivity proved to be more reliable. These results
confirm the importance of incorporating prior knowledge on
test characteristics (Williams & Moffitt, 2010). This prior
knowledge is generally derived through expert elicitation, a
process in which one or more experts express their opinion
on the value or range of a certain parameter. Different expert
elicitation methods exist, ranging from simple face-to-face
interviews to complex structured processes involving several
experts (see also O‘Hagan et al. (2006) for a guide on expert
elicitation).

Although our second simulation considered an imperfect, but
constant individual test sensitivity, it has been reported that
endogenous (pool-related) and exogenous (external) factors
can potentially influence the characteristics of diagnostic
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tests, so these no longer can be considered to be constant.
Examples of endogenous factors are the proportion of females
in the pool (as certain female vectors can engorge themselves
with considerable amounts of blood) and the presence and
concentration of inhibitors (Schwartz et al., 1997; Munoz-
Zanzi et al., 2006). Exogenous factors may relate to field-
related factors such as the locality where and the season when
the samples were taken, or to laboratory-related factors such
as the experience of the lab technician (Speybroeck et al.,
2011). Therefore, one of the objectives of the present study
was to investigate the possibility of taking such factors into
account in the analysis of sample pools. In a third simulation,
we incorporated in the data generation process the inhibition
effect on the pool sensitivity, considered to be proportional to
the weight of the pools. Especially for high true prevalences,
models that were able to take in account this effect of pool
weight produced more accurate prevalence estimates than
the models that only took into account an imperfect test
sensitivity. However, these more complex models generated
relatively large and asymmetric credibility intervals, reflecting
the additional level of uncertainty. Furthermore, the present
study revealed the need for very accurate and precise prior
knowledge (i.e. very narrow priors) on the parameters that
relate the sensitivity to the influencing factor (in our case,
the slope parameter b that related the sensitivity to the pool
weight). Only when using the same slope parameter b as the
one used in the data generation for creating a narrow prior, the
results fitted. Such precise information is, unfortunately, not
available under real-life conditions. This observation brings a
paradox to the surface: if no reference standard test exists,
how can the required knowledge on the test characteristics be
obtained, and how can the field data be reliably corrected?
Where possible, researchers should therefore try to avoid
this situation by collecting and testing samples that do not
contain such modulating factors. For example, this could mean
excluding blood-fed specimens from the pools to be tested
to avoid the inhibitory blood effect on PCRs. Pathogens will
develop and amplify inside the body of competent vectors, thus
detection is not limited to those arthropods that have recently
blood-fed. Fed specimens are usually very few in captures
(unless specific traps for blood-fed arthropods are used) and are
easily recognized while preparing the pool. However, avoiding
modulating factors, may, unfortunately, not be feasible for all
possible modulators. Whether or not modulating factors are
taken in account, the estimated prevalence will be strongly
influenced by what the experts say. Indeed, the expression
of two different opinions by two experts on the value and
range of a parameter will result in two different estimations of
the individual-based prevalence. Scientists should therefore be
very transparent in reporting their results. The expert opinions,
i.e. the distributions used, need to be presented explicitly,
as well as the reasons for these opinions. In addition, the
plausibility of the elicited parameters and the consequent
results should always be debated in the light of the biological
understanding of the vector and pathogen. The use of several
diagnostic tests on the same pools may reduce the dependency
on expert opinions, but combining diagnostic test information
on pools of samples is a yet unexplored research field. A
reasonable option may therefore be to report results under

different scenarios of test characteristics, and to be fully
transparent about the applied test characteristics.

Conclusion

Prior knowledge on the characteristics of the applied diagnostic
test is essential for generating unbiased or best-guess preva-
lence estimates. Therefore, researchers should have a good
understanding of the test characteristics under ideal conditions.
In addition, the identification of modulating factors is crucial,
and carefully designed experiments should be conducted to
generate as accurate information on these factors as possible.
Finally, it is clear that only a Bayesian context will give accept-
able results as it is the only approach that properly includes
known uncertainty on diagnostic test characteristics.

Supporting Information

Additional Supporting Information may be found in the
online version of this article under the DOI reference: DOI:
10.1111/j.1365-2915.2012.01015.x

Appendix S1. R, OpenBUGS and C++ Code.
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